Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Flying Capacitors Explained

2.4.2025
Reading Time: 7 mins read
A A

This article explains flying capacitor circuit configuration features and benefits.

The flying-capacitor size is significantly smaller than the required DC-link capacitor used in traditional booster topologies with the same power rating nevertheless there are some issues to be addressed with this topology. The article is based on Knowles blog article written by Jordan Yates and EE Power article by Viktor Antony.

RelatedPosts

Knowles Releases High Q Non-Magnetic X7R MLCCs for Medical Imaging

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

Knowles Releases Inductors for Mission-Critical RF Applications

As demand for high-efficiency and high-power-density inverters continues to grow, the so-called “flying” capacitor multilevel inverter is emerging as a strong choice for many power electronics systems.

Since these capacitors can “float” to different electric potentials depending on the connected semiconductor switching structure and state, they help balance out voltage level differences due to manufacturing tolerances, temperature variations, and other factors.

These capacitors are also helpful in balancing voltage across the structure by temporarily storing and releasing energy as needed, increasing power density and quality, and optimizing the use of existing voltage availability.

What is a Flying Capacitor?

A flying capacitor is a type of capacitor that is used in multi-level inverters, common in applications such as electric vehicle (EV) inverters, battery management systems (BMSs), renewable energy systems, and other power electronics. The main function of a flying capacitor is to store and transfer energy between different levels of the inverter, using multiple capacitors connected in series and parallel to produce a desired voltage level.

Example I. : Flying Capacitors in a Battery Management System

Popular application areas for flying capacitors include EVs and solar inverters due to their lightweight, compact nature, and ability to help even out voltage and extend longevity of components. For example, within an EV BMS, a flying capacitor can be used to smooth out fluctuations in the voltage of the battery pack. The battery pack in an EV typically consists of many individual cells connected in series and parallel, and these cells can have slight variations in their voltage levels due to manufacturing tolerances, temperature variations, and other factors.

The flying capacitor can be used to balance the voltage across the cells by temporarily storing and releasing energy as needed. This helps ensure all the cells in the battery pack are operating at optimal voltage levels, prolonging the overall life of the battery pack. Additionally, the flying capacitor can help reduce the harmonic distortion of the voltage waveform, improving the overall power quality of the system.

Example II. : High Efficiency Solar Inverters

Using high-efficiency solar inverters is reaching more and more popularity in a design, however, it is not the most economical. To achieve a cost efficient solution, not only the inverter has to be low cost and high efficient, but also the booster stage.

The flying-capacitor booster solution can increase the efficiency while being still cost-efficient. However, it has also some challenges as capacitor sizing, balancing and the pre-charge.

Flying Capacitor Design Considerations

Sizing of the Flying-Capacitor

The voltage supplied by a flying-capacitor has a key role in this topology. To keep the voltage ripple on the capacitor low, a suitable capacitor size is needed. To determine the needed capacitance, the switching frequency and the maximum allowed voltage ripple need to be considered. The size of the capacitance can be calculated as:

Flying capacitor capacitance calculation

where dUFC is the maximum allowed voltage ripple, Ipeak is the maximum current, and fSW is the switching frequency of the transistors.

Balancing of the Capacitor Voltage

For the appropriate operation the flying-capacitor, voltage has to be half of the output voltage. To achieve this, it must be regulated at all time. This can be done by changing the operation modes.

Pre-Charge of the Flying Capacitor

In case when all the control signals of used transistors are low, the flying-capacitor voltage cannot be regulated. In that operation an extra effort is needed to keep the flying-capacitor voltage on the safe side. Failing to eliminate the overvoltage on the semiconductors may cause a fatal error in the system.

There is a method proposed by Mitsubishi Electric Corporation [1] to protect the flying capacitor booster, when there are no control signals (e.g.: during startup).

There are two operation modes, when all the transistors are OFF: 1) When the input is applied and the output is equal with the input (e.g.: startup), and 2) when the input is zero and the output is not. This happens, for example, when one string is not connected to the circuit and other boosters are working. In both two cases the voltage of the flying-capacitor is zero, and the voltage sharing of the two transistors is not defined. To keep the voltage level of the semiconductors below the breakdown voltage, additional balancing has to be used.

During startup the current flows through the two diodes and charge the output capacitance. In this case the output voltage is equal to the input voltage, while the flying-capacitor voltage is zero. This is dangerous for the lower switch. To eliminate this problem, another current path has to be added, in which the current can charge also the flying capacitor. For this a diode can be used, a cathode of which has to be connected to a capacitive voltage divider, where the lower point of the flying-capacitor is clamped at the half of the DC-link voltage. This can be seen on Figure 1.

Figure 1: Flying capacitor pre-charge: the additional current path during startup; source: EE Power
 

Ceramic Capacitor Benefits

Ceramic capacitors can offer number of benefits as flying capacitors. They are non-polar devices unlike the other electrolytic capacitors and offer high capacitance and voltage range compare to the other electrostatic capacitor types. Because of the physical properties of ceramic capacitors, many companies are choosing this route to leverage the benefits of ceramic, including:

  • High Dielectric Constant: Ceramic capacitors can store a large amount of energy in a small package.
  • Non-Polar Capacitor: Ceramic capacitors are non-polar devices, so the voltage polarity is not of a concern.
  • Low Equivalent Series Resistance (ESR): Ceramic capacitors can transfer energy quickly and efficiently.
  • Size and Lifespan: Ceramic capacitors are small and lightweight with a long lifespan, which helps reduce the size and weight of the inverter, making them ideal for use in compact electronic devices.
  • Speed of Transfer: Ceramic capacitors can quickly transfer energy between different levels of an inverter, helping reduce losses and improve the overall efficiency of the system.

Conclusion

The flying-capacitor booster is a high-efficient, low cost solution for solar inverter or battery management applications.

The main advantages are the frequency multiplication, the lower semiconductor voltage, the lower voltage and current ripple, the lower switching losses, and the low EMI emission.

The flying-capacitor size is significantly smaller than the required DC-link capacitor used in traditional booster topologies with the same power rating. The challenge is to regulate the voltage of the flying-capacitor especially when all the transistors are in OFF state (i.e.: before the converter is turned on). The balancing can be achieved by state regulation. Also the pre-charge challenge can be solved easily by additional diodes based on Mitsubishi Electric Corporation’s patent [1]. With these diodes the flying-capacitor booster is a cost efficient alternative for the other booster solutions with higher efficiency.

References

[1] T. Okuda and H. Ito, “DC/DC POWER CONVERSION APPARATUS”. United States Patent US 2013/0021011 A1, 24 01 2013.

Related

Source: Knowles Precision Devices

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
6

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
14

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
31

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
15

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
16

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
3

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
23

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
31

Connector PCB Design Challenges

3.10.2025
34

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version