Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Enhanced 2D Ferromagnets Performance

    Bourns Releases Two High Current Common Mode Choke Models

    Electronics Weekly Announcing Finalists for Elektra Awards 2025

    Exxelia Exhibit at Electronica India September 17–19, 2025

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

High Q Capacitors – Roles and Specifications

11.9.2023
Reading Time: 4 mins read
A A

This article based on Knowles Precision Devices blog explains high Q ceramic capacitors role, specifications and its applications.

Q factor, or quality factor, is an electrical term used to describe the ratio of energy stored to energy dissipated in a capacitor at a certain frequency (you can learn more about the different components of Q factor and ways to define it here).

RelatedPosts

Researchers Enhanced 2D Ferromagnets Performance

Bourns Releases Two High Current Common Mode Choke Models

Electronics Weekly Announcing Finalists for Elektra Awards 2025

In other words, Q factor tells us how good a capacitor is at its job at a certain frequency. A high Q value indicates low energy loss during operation, making these capacitors a good fit for applications requiring low power dissipation and high stability.  

The Importance of High Q Capacitors in Electronic Circuits

High Q capacitors are crucial components for various electronic circuits and systems due to their ability to minimize energy losses and maintain a high degree of performance. A High Q capacitor can offer the following characteristics: 

  • Low Energy Loss – In many applications, minimizing energy loss is crucial to maintain system performance and efficiency. High Q capacitors exhibit lower energy losses in the form of heat or electromagnetic radiation, which is beneficial in high-frequency or high-power applications.
  • Well-Defined Frequency Response – High Q capacitors have a narrow bandwidth and a well-defined resonant frequency. This characteristic makes them suitable for applications like filters and oscillators, where sharp frequency response and stability are required.
  • Low Equivalent Series Resistance (ESR) – High Q capacitors have a low ESR, which is the resistive component of a capacitor’s impedance. Low ESR results in lower power dissipation, better thermal stability, and better overall performance in high-frequency applications.
  • Low Phase Noise – High Q capacitors contribute to lower phase noise in circuits, which is essential for maintaining signal integrity and reducing noise-related issues in communication systems, radar, and other sensitive applications.

It is also important to note that the Q of a capacitor can be managed by carefully choosing the materials and construction of the capacitor. This is because multilayer ceramic capacitors (MLCCs) are made up of alternating layers of ceramic dielectric material and metal electrodes and compressed to form a compact, high-capacitance device. 

The Many Jobs High Q Capacitors Perform

As a result of the characteristics described above, high Q MLCCs are widely used in a variety of applications including the following:

  • RF and Microwave Circuits – Used for their low loss and high stability in filters, impedance matching networks, and resonant circuits. These components are essential for maintaining signal integrity, minimizing energy losses, and achieving optimal performance.
  • Wireless Communication Devices – Used in smartphones, tablets, and Internet of Things (IoT) devices because of their excellent performance in high-frequency circuits and their small form factor.
  • Telecommunication Systems – Used for filtering, impedance matching, and noise reduction to ensure optimal signal transmission and reception.
  • Oscillators and Timing Circuits – Crucial components for providing stability and reduced phase noise in these devices.
  • Medical Equipment and Scientific Instrumentation – Used in medical devices like MRI machines, ultrasonic equipment, and implantable devices where high reliability and low power loss are essential.
  • Aerospace and Defense Applications – Used in radar systems, satellite communication devices, and avionics due to their stable performance in extreme environmental conditions and high-frequency operations.
  • Antenna Systems – Used to match impedance, minimize energy loss, and improve radiation efficiency.
  • Power Electronics – Used in power electronics applications like switch-mode power supplies and power factor correction circuits to minimize energy loss, reduce noise, and enhance performance.
  • Resonant Circuits – Critical components in resonant circuits like LC (inductor-capacitor) oscillators and crystal oscillators where high selectivity and frequency stability are required.

Related

Source: Knowles Precision Devices

Recent Posts

Electronics Weekly Announcing Finalists for Elektra Awards 2025

16.9.2025
3

Exxelia Exhibit at Electronica India September 17–19, 2025

15.9.2025
22

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
10

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
9

5th PCNS Awards Outstanding Passive Component Papers

14.9.2025
34

TDK Releases Ultra-small PFC Capacitors

10.9.2025
32

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
25

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
17

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
30

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
33

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version