Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Hirose Releases High Current Vibration-Resistant Connectors

4.8.2025
Reading Time: 2 mins read
A A

Hirose Electric unveils industry leading high current vibration-resistant connectors for the EV and HEV Markets.

Hirose Electric Co., Ltd. announced the launch of the FX31 Series, the world’s first board-to-board connector series that combines high current capability with a rugged, vibration-resistant design.

RelatedPosts

Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

Hirose Introduces One Action Top and Bottom Contact Connectors

This groundbreaking innovation is set to transform the automotive industry by addressing the growing demands of electric vehicles (EVs) and hybrid electric vehicles (HEVs) for high currents and durability in harsh vibration environments.

Powertrain Innovation: Unlocking New Possibilities with High-Current Connectors

As powertrain systems in EVs and HEVs increasingly require high currents, traditional busbars with screw-fastening methods have posed challenges such as large component size, limited design flexibility, and complex assembly. Hirose Electric has leveraged its expertise in vibration-resistant signal connectors to develop the FX31, a connector-based solution that replaces conventional busbars. This innovation enables miniaturization, weight reduction, and supports assembly automation, leading to greater manufacturing efficiency and cost savings.

The FX31, when combined with the FX26 Series for signal transmission, supports hybrid power and signal connections in a compact form factor, contributing to high-density mounting and significant cost reductions.

Unique Features of the FX31 Series

  • World’s First High Current + Vibration-Resistant Structure: The FX31 features a proprietary floating design that absorbs vibration and shock while safely delivering high current, up to 25A per contact, with potential support for up to 40A per contact in a 2-position configuration.
  • Floating Design for Greater Assembly Flexibility and Labor Savings: Eliminates the need for screw fastening, facilitating seamless integration into automated assembly lines, including robotic systems.
  • Compact and Lightweight: Smaller and lighter than traditional busbars, offering greater design flexibility for PCB layouts.
  • Hybrid Connection with FX26 Series: Supports high-density mounting and contributes to total cost reduction when combined with the FX26 Series for signal lines.

The FX31 Series is designed to support powertrain system integration and meet the high-current demands of next-generation high-end IVI (In-Vehicle Infotainment) automotive computers, driving continued market expansion.

Under Development

Hirose Electric is expanding the FX31 Series lineup to meet customer demand, with the following variations currently in mass production and planned for development:

  • Currently in Mass Production: 2-position connectors with a height of 20mm.
  • Planned for Development: 3-position and 4-position connectors with heights of 25mm and 30mm, respectively.

Related

Source: Hirose

Recent Posts

Connector Industry Achieves Double-Digit Growth

19.8.2025
12

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
10

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
135

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
15

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
34

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
43

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
27

Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

1.8.2025
13

PCNS 2025 Final Program Announced!

4.8.2025
93

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version