Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    Littelfuse Acquires Basler Electric Enhancing High-Growth Industrial Market

    DigiKey Grows Inventory with Over 31K New Stocking Parts in Q3 2025

    Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Influence of Shielding Materials on Shielding Effectiveness

10.4.2025
Reading Time: 5 mins read
A A

This article provides an overview of impact of shielding materials on shielding effectiveness. The post is based on Würth Elektronik‘s “Reference Guide ABC of Shielding” that can be ordered from WE website here. Published under permission by Würth Elektronik.

The fundamental principle of shielding enclosures against electromagnetic fields is to construct a Faraday cage around an electrical device.

RelatedPosts

Shielding Cabinets

Magnetic Shielding and Magnetic Shielding Sheets

Corrosion its Development and Prevention

If PCBs and internal cabling are meticulously designed, the amount of enclosure shielding required can be significantly reduced. However, if it becomes evident that enclosure shielding is necessary, the design of the enclosure to meet EMC requirements will become a crucial cost factor for the product.

A shielded enclosure must be constructed using materials that possess the requisite electrical properties and adhere to the application-specific requirements. Discontinuities, such as housing openings, seams, and sheet metal overlaps, should be minimized and designed in a manner that maintains the effectiveness of the housing shielding.

This can be achieved through the appropriate use of EMI shielding gaskets, ventilation, window shields, and shielded and filtered peripheral cables. The materials employed in the manufacture of enclosures include metal sheet and foil, non-metallic materials like plastic materials with conductive coatings, conductive plastics, and various composites.

Metal Sheets

Metal sheets are effective in shielding electrical (high-impedance) fields due to their high conductivity, as illustrated in Figure 1.

Fig.1. Shielding effectiveness with copper sheet above frequency for electric and magnetic fields and plane waves

The shielding effect for electric fields is infinite for direct current and decreases with increasing frequency. However, magnetic fields are more challenging to shield. As frequency decreases, non-magnetic materials like aluminum exhibit reduced reflection and absorption losses, making it difficult to shield magnetic fields using them.

At high frequencies, the shielding effectiveness is high due to reflection and absorption losses, so the choice of materials becomes less critical. Regarding plane waves, magnetic materials offer better absorption attenuation, while well-conducting materials provide better reflection attenuation. Table 1. provides a qualitative overview of these parameters.

Tab. 1.:  Overview of the shielding attenuation properties of materials depending on the field types.

Some of the values in Table 1. are quite high because they were measured in the laboratory under ideal conditions for comparison purposes and are rarely achieved in practice. It is often assumed that materials with sufficient structural stiffness also have sufficient thickness to achieve a sufficient shielding effect. However, this is not always the case for devices operating in the low-frequency range (typically <100 kHz). At these low frequencies, it is necessary to use a highly permeable material to achieve sufficiently high shielding effectiveness against magnetic fields.

Plastics with Shielding Attenuation Properties

Plastics, synthetic materials derived from raw materials called monomers, exhibit diverse physical properties like melting point, strength, and formability. However, these properties can hinder their processing and usability. Composite materials have emerged as a solution to address these shortcomings. Composite materials are combinations of two or more materials designed to achieve a property that none of the individual materials can provide. This combination often results in enhanced strength, but it can also increase electrical conductivity and improve electromagnetic shielding properties.

To improve the electrical and electromagnetic properties of plastics, graphite mats or other materials can be used, such as the addition of conductive fillers. Typical conductive fillers are graphite flakes, metal-coated graphite fibres, and metal flakes or fibres. The resistivity of carbon fibre composites ranges from 4 mΩ/cm to some 100 mΩ/cm, depending on the number of layers and their weaving angle.

This is three to four orders of magnitude greater than copper or aluminum. Thus, most composites pose serious problems for electrical connections. The establishment of low-impedance and long-term reliable electrical contact between a housing ground and the electronics is essential for a functioning EMC concept. The conductivity of the housing surface can also be achieved by integrating a conductive screen or by coating the housing with conductive paint. The technologies used to apply conductive enclosure coatings include flame spraying, arc spraying, vacuum metallization, painting with conductive paints, and covering with conductive foil. This can further improve the surface conductivity of composite materials. Surface resistance can thus be reduced to 5 to 100 mΩ/cm.

All these plastics with shielding attenuation properties offer a certain degree of attenuation within a limited frequency range. Table 2. compares the conductivity and magnetic permeability of various materials. It’s evident that only materials containing ferromagnetic components exhibit effective attenuation of low-frequency magnetic field components, as only these have a magnetic permeability exceeding 1.

Tab. 2.: Conductivity and magnetic permeability of different materials

Plastic housings have a crucial aspect to consider: their interference resistance against electrostatic discharges. Materials with a specific surface resistance of less than 1 · 107 Ω/square can accumulate static charge if electrically connected to a conductive structure like a wire, allowing the charge to flow. Conversely, materials with a resistivity of more than 1 · 1013 Ω/square can build up static charge that remains undissipated even when the housing is grounded by a conductor.

Graphite-reinforced materials are generally conductive enough to prevent static charge buildup when graphite particles protrude through the plastic to the surface. In contrast, epoxy resin surface coatings lack conductivity, necessitating an additional conductive coating in certain cases.

Related articles:

  • Electromagnetic Housing Shielding and Its Effectiveness
  • Parameters of Shielding Attenuation

Related

Source: Reference Guide on Shielding

Recent Posts

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
4

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
4

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
41

Power Inductors Future: Minimal Losses and Compact Designs

30.10.2025
49

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

30.10.2025
53

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
31

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
42

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
87

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
44

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
68

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version