Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Kagome Graphene Lattice Structure Promises Exciting Properties Towards Efficient Electronic Components

15.2.2021
Reading Time: 3 mins read
A A
Kagome graphene is characterized by a regular lattice of hexagons and triangles. It behaves as a semiconductor and may also have unusual electrical properties. Credit: R. Pawlak, Department of Physics, University of Basel

Kagome graphene is characterized by a regular lattice of hexagons and triangles. It behaves as a semiconductor and may also have unusual electrical properties. Credit: R. Pawlak, Department of Physics, University of Basel

Researchers from the Department of Physics and the Swiss Nanoscience Institute at the University of Basel, working in collaboration with the University of Bern, have now produced and studied kagome graphene for the first time, as they report in the journal Angewandte Chemie. The researchers’ measurements have delivered promising results that point to unusual electrical or magnetic properties.

Researchers around the world are searching for new synthetic materials with special properties like superconductivity—that is, the conduction of electric current without resistance. These new substances are an important step in the development of highly energy-efficient electronics. The starting material is often a single-layer honeycomb structure of carbon atoms (graphene).

RelatedPosts

Samtec Expands Connector Severe Environment Testing Offering

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

Theoretical calculations predict that the compound known as kagome graphene should have completely different properties to graphene. Kagome graphene consists of a regular pattern of hexagons and equilateral triangles that surround one another. The name kagome comes from the old Japanese art of kagome weaving, in which baskets are woven in the same pattern.

Kagome lattice with new properties

To produce the kagome graphene, the team applied a precursor to a silver substrate by vapor deposition and then heated it to form an organometallic intermediate on the metal surface. Further heating produced kagome graphene, which is made up exclusively of carbon and nitrogen atoms and features the same regular pattern of hexagons and triangles.

Strong interactions between electrons

“We used scanning tunneling and atomic force microscopes to study the structural and electronic properties of the kagome lattice,” reports Dr. Rémy Pawlak, first author of the study. With microscopes of this kind, researchers can probe the structural and electrical properties of materials using a tiny tip—in this case, the tip was terminated with individual carbon monoxide molecules.

In doing so, the researchers observed that electrons of a defined energy, which is selected by applying an electrical voltage, are “trapped” between the triangles that appear in the crystal lattice of kagome graphene. This behavior clearly distinguishes the material from conventional graphene, where electrons are distributed across various energy states in the lattice—in other words, they are delocalized.

“The localization observed in kagome graphene is desirable and precisely what we were looking for,” explains Professor Ernst Meyer, who leads the group in which the projects were carried out. “It causes strong interactions between the electrons—and, in turn, these interactions provide the basis for unusual phenomena, such as conduction without resistance.”

Further investigations planned

The analyses also revealed that kagome graphene features semiconducting properties—in other words, its conducting properties can be switched on or off, as with a transistor. In this way, kagome graphene differs significantly from graphene, whose conductivity cannot be switched on and off as easily.

In subsequent investigations, the team will detach the kagome lattice from its metallic substrate and study its electronic properties further. “The flat band structure identified in the experiments supports the theoretical calculations, which predict that exciting electronic and magnetic phenomena could occur in kagome lattices. In the future, kagome graphene could act as a key building block in sustainable and efficient electronic components,” says Ernst Meyer.

Related

Source: phys.org; university of Basel

Recent Posts

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
13

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
19

Improving SMPS Performance with Thermal Interface Material

30.9.2025
12

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
12

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
22

Life Cycle Assessment of a Graphene-Based Supercapacitor

26.9.2025
18

Advancements in Flexible End Terminations for Robust MLCCs in EV

26.9.2025
42

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
35

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
9

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version