Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Kemet Polymer to MLCC Shortage: When You Can’t Find The Cap You Need

5.5.2018
Reading Time: 5 mins read
A A

source: Kemet engineering center tech article

Kemet Engineering Center just released a technical article on tantalum polymer to MLCC guidelines reflecting the current MLCC shortage issues. This is a complementary article to the original EPCI paper on tantalum to MLCC replacement considerations published in April 2018 here. Wilmer Companioni, Friday, May 4th, 2018

RelatedPosts

May 2025 Interconnect, Passives and Electromechanical Components Market Insights

HIROSE Releases New Field-Assembly Communication Connectors

Coilcraft Unveils 165C High-Temperature Coupled Inductors

It is 2018 and you’re probably reading this because you’re wondering when you’re gonna get your order of MLCCs. Either that or you’ve used some four-letter word to describe the lead times at your favorite distributor. Yes, the MLCCs industry is experiencing quite the capacity crunch. The last time it was like this we were back in the .COM days of ’99-2000. Manufacturers are putting in capacity, but that will take some time to come up. I know that’s cold comfort for the engineers who are dealing with line down situations, and the supply chain managers who are having to beg, borrow, and steal parts. It is times like this that make engineers explore new options and alternative techniques without having to do a massive redesign. Our polymer electrolytic capacitors are one type of alternative that, given certain conditions, can help. Going to KO-CAP isn’t always trivial, but if certain things align, they can be of great relief.

A Primer On KO-CAP

Let’s all get to the same baseline. KO-CAP is KEMET’s tantalum-based polymer electrolytic capacitor. Like any other tantalum capacitor, it is a slug of sintered tantalum powder that has a tantalum pentoxide layer grown on it, with a layer of conductive polymer acting as the cathode. This conductive polymer gives the capacitor much lower ESR than “traditional” tantalum capacitors. That’s all I have to say about that.

MLCC to KO-CAP

I am not delusional, I was (am) an engineer too and selling me on tantalum when I’m looking for MLCCs isn’t exactly the way to my heart. But, as engineers, solving problems is what we do and that means doing things we haven’t previously considered. As with anything else in engineering, making the decision to go to KO-CAP from MLCC is just a matter of managing tradeoffs. There are a slew of things that must be considered when making that decision. The critical design parameters that must be considered when attempting to make the change are; capacitance, voltage, ESR, frequency, leakage current, size, and qualifications. The flow chart below serves as a guide to making that decision when considering each of those critical design parameters. We are going to look at it from the standpoint that you’re trying your best to get as close as possible to the characteristics of your ceramic capacitor.

Capacitance

KO-CAPs tend to have much high capacitance than a similarly sized ceramic capacitor. They don’t come in values smaller than 680nF. So, if your total capacitance is less than that, KO-CAP is not a suitable option. When it comes to capacitance, it is usually a very strong value proposition to replace a bank of MLCCs with one or two KO-CAPs.

Voltage

In KO-CAP, or any tantalum-based capacitor for that matter, the dielectric layer is very thin. A typical value is about 20nm. Having such a thin dielectric gives you a large amount of capacitance, but it also has the effect of limiting your voltage. A “high voltage” KO-CAP would be anything more than 35V. In general, if your operating voltage is more than 50V, KO-CAP is not a suitable option.

ESR

Ceramic capacitors, in a general sense, have lower ESR than an equivalent KO-CAP counterpart. That is not to say that there aren’t some very low ESR KO-CAPs. Some even go as low as 8mΩ, but a typical cutoff of 10mΩ is adequate. If you need ESR less than that, then KO-CAPs may not be a suitable option.

Frequency

What you have to watch out for when considering frequency characteristics of KO-CAP is the self-resonant frequency. You generally want to operate capacitors below this point. It isn’t always the case, but if your switching frequency goes much higher above 1MHz then you should look out for that self-resonant point of a KO-CAP.

Reverse Bias

KO-CAPs are polar devices, as such, they can not take reverse bias voltage. If the capacitor is placed in a location which reverse bias is possible or needs to be tolerated, KO-CAPs are not suitable.

A Replacement Example

Alright, we have our guidelines, so what do we do now? What does this all mean. Let’s take a look at an example using a TI TSP54560B-Q1, that’s a buck for automotive applications.

I am an engineer and I have this circuit designed and everything is great. Until my sourcing person tells me that they can’t find some of the MLCCs I need. After berating them for a little while, I decide it is time to get creative and find a solution. Using the replacement guidelines I come to the conclusions below.

Input Side

C1, C2, C3, and C10 are my input side capacitors. They are 2.2uF 50V 1206 X7Rs. There isn’t a drop-in replacement for the ceramics, but I can take the total 8.8uF capacitance and replace the 4 ceramics with one 10uF 35V KO-CAP. It is more than the original capacitance we need, but it is still within the required range for this regulator. ESR, Leakage, and frequency are not of concern on the input side, as long as the input isn’t direct battery voltage. Our simulation tool, K-SIM, show their side by side comparison.

Yes, I hear your concern, “what’s this going to cost me?” Well, let’s do the math. The total cost of the 4 MLCCs is $4.16. Replacing those 4 with one KO-CAP saves about a bit over a dollar.

Output Side

On the output side we have C6, C7, C9, and C11; 22uF 10V X7R 1206s. In this case we are lucky, there is a drop-in replacement of that in KO-CAP. It is 6.3V but more than the output voltage range. In this case the KO-CAP ESR is higher than the ceramic equivalents, but still within the design spec. The switching frequency of the circuit is 300kHz and the SRF of my replacement is around 1MHz, so I am good there.

Money-wise, we have similar story on the output side. In this case we have an MLCC that is nearly $2! Yeah, I know it is a very expensive cap, but you can’t even get it anyway, so it is a moot point. The KO-CAP replacement is just over a dollar. Saving you a whopping 45%.

Other Capacitors and Considerations

C4, C5, and C8 are other caps that support the functionality of the device. There are suitable candidates for substitution because of both their physical size and capacitance value. Caps of this type are not experiencing quite the same capacity crunch. I didn’t mention leakage current very much because in truth, that is only a concern in systems that have fixed non-rechargeable batteries.

MLCC Substitution Conclusions

Finding a drop-in replacement is doable but it isn’t the same level of value proposition as replacing a bank of capacitors with a much lower quantity of KO-CAPs. Sometime a substitution won’t be feasible, but during times of capacity crunches such as this, finding solutions through other avenues could make you the hero your project deserves.

article, featured image and figures credit: Kemet

 

Related

Recent Posts

May 2025 Interconnect, Passives and Electromechanical Components Market Insights

3.6.2025
5

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
27

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
39

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
68

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
62

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
75

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
58

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
80

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
81

Upcoming Events

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Dissipation Factor of Plastic Materials Explained

    0 shares
    Share 0 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version