Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
Reading Time: 3 mins read
A A

In a collaboration between Murata Manufacturing Co., Ltd., and the National Institute for Materials Science (NIMS), researchers have compiled a comprehensive new database of dielectric material properties.

This database is a treasure trove of information, meticulously curated from thousands of scientific papers.

RelatedPosts

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

Murata Releases Worlds First Molded Thermistor with Wire-Bonding

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

The study, published in Science and Technology of Advanced Materials: Methods, not only presents this valuable resource but also offers valuable insights that could significantly accelerate the development of next-generation electronic materials and energy storage technologies. 

Artificial Intelligence (AI) has the potential to revolutionize materials discovery, but it relies on extensive and diverse datasets. The absence of such data remains a significant obstacle in the field.

To address this challenge, researchers employed the Starrydata2 web system to collect experimental data on over 20,000 material samples from more than 5,000 publications. The National Institute of Materials Science (NIMS) team developed a standardized approach to extract data from graphs, including temperature-dependent properties that are often overlooked in other databases. The researchers emphasized the meticulous process of manually tracing graphs and correcting inconsistencies in original research papers to create a clean and high-quality dataset.

The database focuses on a specific class of materials crucial for electronics and holds the distinction of being the largest ever reported, significantly surpassing previous collections. Equipped with this wealth of information, the team utilized machine learning (ML) to predict the properties of materials and their electronic behavior.

While the ML models demonstrated effectiveness, they initially operated as “black boxes,” rendering the reasons behind their predictions opaque to the researchers. To comprehend the context behind these predictions, the team created visual maps of the data, simplifying the interpretation of complex information.

Figure 1. Schematics of data curation procedure from scientific literature. We extracted figures and tables containing dielectric properties, digitized the data, and registered them in the database. The dataset includes material composition, temperature dependence of dielectric permittivity and dielectric loss, and measurement frequency.

Additionally, they employed clustering algorithms to automatically group similar materials, enabling them to identify patterns in how a material’s composition influences its properties. This analysis not only allowed them to categorize the materials into distinct groups, including seven prominent ferroelectric families, but also provided a comprehensive overview of the entire compositional space. 

The team delved deeper into ABO3 Perovskites, a family of materials crucial in everyday electronic devices and energy storage technologies, such as smartphones, computers, and solar cells. Their visualizations revealed a straightforward connection between the material’s fundamental structure and its dielectric permittivity, aligning with existing academic knowledge.

This groundbreaking research advances our comprehension of dielectric materials and transcends conventional trial-and-error methods. The team explained, “By compiling the largest dataset ever and employing diverse machine-learning techniques, we achieved unprecedented detail in visualizing the entire compositional landscape.”

The NIMS team intends to make the dataset publicly accessible next year, enabling scientists globally to harness its potential for groundbreaking discoveries. Future endeavors may involve expanding data collection to encompass manufacturing methods and processing conditions, facilitating more comprehensive predictions that establish direct links between production processes and material properties.

The researchers concluded, “We fervently hope that this foundational work will inspire similar data collection initiatives and novel approaches to materials discovery. Ultimately, this will lead to more intelligent materials development pathways that benefit society through enhanced electronic technologies.” 

Related

Source: Science and Technology of Advanced Materials Journal

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
16

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
6

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
15

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
13

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
59

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
29

Understanding Switched Capacitor Converters

9.6.2025
71

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
36

What Track Width To Use When Routing PCB

6.6.2025
32

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
27

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version