Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

    binder Offers Wide Range of M12 Panel Mount Connectors

    Bourns Releases New Shielded Power Inductors for DDR5

    Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Commercializes an Automotive, High Vibration Acceleration-Resistant, Conductive-Polymer Hybrid Aluminum Electrolytic Capacitor

26.12.2017
Reading Time: 4 mins read
A A

source: Panasonic news

The capacitor is the industry’s first 6.3mm diameter and 30G vibration acceleration resistant characteristics. It will be launched in January 2018. Their compact diameter and stability for vibration is suitable to ECUs in automotive.

RelatedPosts

Wk 22 Electronics Supply Chain Digest

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

Osaka, Japan – Panasonic Corporation announced today that it has commercialized an anti-vibration, surface-mounted conductive-polymer hybrid aluminum electrolytic capacitor [1] suitable for use in power circuits for automotive electric control units (ECUs) employed in hybrid electric vehicles, electric vehicles, and gasoline-powered vehicles. The company will launch the capacitor in January 2018.

With the growing demand for eco-friendly cars, energy efficiency and the need to comply with environmental regulation, more ECUs are being employed in cars. Mechanical and electrical in-vehicle components are also becoming integrated [2]. This trend has created a need for more compact ECUs combined with better resistance to vibration. The capacitors employed to stabilize the voltage of a power circuit for the ECU and eliminate electronic noise are therefore increasingly required to be smaller in size and to show better anti-vibration performance. The company launches the industry’s first surface-mounted conductive polymer hybrid aluminum electrolytic capacitor which is only 6.3 mm in diameter and achieves resistivity of 30G high vibration acceleration.

Panasonic’s new conductive-polymer hybrid aluminum electrolytic capacitor have the following features:

  1. The capacitor is 6.3 mm in diameter and is highly vibration acceleration resistant, contributing to smaller and more vibration-resistant ECUs.
    • Size: 6.3 mm in diameter, and 6.1 mm or 8.0 mm in height
    • The newly developed capacitor withstands the vibration acceleration [3] of 30G The conventional capacitor*2 withstands vibration acceleration is 10G to the same aluminum electrolytic capacitor.
  2. The capacitor renders unnecessary the anti-vibration techniques that are conventionally part of the board mounting process, thus allowing customers to streamline their production processes.
    • It reduces the use of bonding-based reinforcing measures, such as attachment using adhesives.
  3. The capacitor benefits from Panasonic’s unique auxiliary terminal structure, which offers highly reliable soldering properties.

Notes:

  • *1: As a conductive polymer hybrid aluminum electrolytic capacitor with a diameter as low as 6.3 mm as of December 25, 2017 (Panasonic data)
  • *2: Panasonic’s conventional product: conductive polymer hybrid aluminum electrolytic capacitor with a diameter of 6.3 mm

Suitable applications:

Power circuits for high-performance ECUs incorporated in hybrid electric vehicles, electric vehicles, and gasoline-powered vehicles, mechanical-electrical-integrated ECU circuits

Product Features

1. Anti-vibration capacitor achieving a 6.3 mm diameter for the first time in the industry that contributes to miniaturization of the ECU combined with effective resistance to vibration

The pressure to reduce the size, weight and number of power train-type ECUs mounted in cars has led to a change in their placement from the engine compartment to the engine itself. This has increased the need for the capacitors incorporated in ECUs of this type to be small, high-capacitance, and extremely anti-vibration. Currently, most capacitors with superior anti-vibration performance are 8 – 10 mm in diameter. The industry, however, needs a smaller type. Leveraging our own auxiliary terminal structure, Panasonic has commercialized anti-vibration capacitor with a diameter of 6.3 mm that withstands vibration acceleration of 30G for the first time in the industry. This new capacitor will contribute to miniaturization of the ECU and provide better overall resistance to vibration.

2. The new capacitor removes the need for anti-vibration reinforcement as part of the board mounting process, allowing customers to streamline their production processes

The conventional ECU board mounting process requires anti-vibration measures, such as anchoring components with adhesives, to make the ECU resistant to vibration if using non-vibration-resistant components. The developed capacitor has achieved anti-vibration performance high enough to withstand a vibration acceleration of 30G, making such anti-vibration measures unnecessary, thus allowing customers to streamline their production processes.

3. The capacitor has Panasonic’s unique auxiliary terminal structure that offers reliable soldering properties

This auxiliary terminal structure has auxiliary terminals positioned on the sides of the capacitor. This eases visual confirmation of auxiliary terminal soldering, ensures stable soldering properties, and enhances the ECU’s overall vibration resistance.

Basic specifications:

Product series ZA, ZC, ZK
Size (diameter x height) Diameter 6.3 mm x height6.1 mm
Diameter 6.3 mm x height 8.0 mm
Vibration acceleration 30G (294 m/ s²)
Frequency 5 – 2000 Hz
Amplitude 5 mm
Resistance to vibration
(direction, time)
Vibration in the X, Y, and Z directions lasting
for two hours each

Term Descriptions

[1] Conductive polymer hybrid aluminum electrolytic capacitor
This is a capacitor containing a hybrid electrolyte made by mixing together a solid electrolyte (conductive polymer) and a liquid electrolyte (electrolytic solution). It combines a low-ESR (resistance) characteristic, which is one of the benefits of conductive polymer capacitors, with a low-leak current characteristic, which is one of the advantages of aluminum electrolytic capacitors.
[2] Integration of mechanical and electrical components
This refers to the integration of mechanical drive components and the ECU. Mechanical drive components and the ECU used to be physically separated but were interconnected via cables. Demand for high-precision control, a higher degree of freedom in component layout, reduction in number of cables, etc., has led to the adoption of an integrated configuration of mechanical and electrical components.
[3] Vibration acceleration
Vibration acceleration is a scale for expressing intensity of vibration.

Related

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
20

Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

29.5.2025
16

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
35

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
61

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
60

Samsung Electro-Mechanics Releases 165C Automotive 0806 Size Power Inductors

21.5.2025
35

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
74

Coilcraft Extends Air Core RF Inductors

20.5.2025
19

Bourns Releases Automotive 1W Flyback Transformer

19.5.2025
29

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version