Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Murata Christophe Pottier Appointed President of EPCIA

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Releases a 0402 Size, High Precision ESD Robust Thin Film Chip Resistor

23.3.2018
Reading Time: 5 mins read
A A

source: Panasonic news

Panasonic Corporation has developed a 0402 size, high precision thin film chip resistor that helps increase accuracy and decrease electro-static discharges risk in automotive ECUs and industrial robots.

RelatedPosts

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

Skeleton Opens SuperBattery Factory in Finland 

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

Osaka, Japan – Panasonic Corporation has developed a 0402 size, high precision thin film chip resistor that achieves the most robust electro-static discharge (ESD)[1] protection*1 in resistor field. Mass production is planned to start from June 2018. The resistor will help increase accuracy and decrease ESD risk in the power supply units and automotive electronic control units (ECUs), industrial robots, etc.

The need for anti-ESD design in ECUs has been growing with the ever-increasing use of electronics in vehicles. In addition, along with the development of autonomous vehicles as well as environmentally friendly vehicles that feature improved fuel efficiency, ECUs have become increasingly compact and accurate. For this reason, compact, high precision, and high anti-ESD performance resistors are required for such ECUs. The thin film chip resistor, which achieves the industry’s most robust ESD protection while remaining compact and high precision, has been developed based on Panasonic’s proprietary thin film formation technology.

Panasonic’s new chip resistor have the following features:

  • Small size, high precision thin film chip resistor, which achieves the industry’s most robust ESD protection*1, for improved anti-electro-static performance and accuracy in control circuits
    Anti-ESD performance: HBM[2] 1kV*2, more than 2.5 times better than Panasonic’s conventional products*3
    Temperature coefficient of resistivity (T.C.R.): ± 5 × 10-6/°C,
    Resistance tolerance: ± 0.05%
  • Heat shock performance and long-life-time use capability suitable for automotive applications
    Heat shock condition: -55 to 155°C, 1,000 cycles*4, equivalent to Panasonic’s conventional products*3
  • Superior anti-sulfur corrosion robustness for improved reliability in control circuits
    Hydrogen sulfur life time: 1,000 h*5

Notes:
*1: As a 0402-size, high precision (temperature coefficient of resistivity: ±5 × 10-6/°C or less, resistance tolerance: ± 0.05% or less) thin film chip resistors, as of March 22, 2018 (Panasonic data)
*2: In 0402-size, thin film chip resistors compliant with standard AEC-Q200 Class 1C
*3: Panasonic’s conventional products (ERA2A series of 0402-size, thin film chip resistors)
*4: Actual values in the company’s standard test conditions (temperature conditions: -55°C for 30 min, 155°C for 30 min)
*5: Actual values in the company’s testing standards (H2S concentration: 3 ppm, temperature: 40°C, relative humidity: 90 to 95% RH)

Suitable Applications:

Automotive:
Control and power circuits in engine ECUs, hybrid electric vehicle (HEV) and EV inverters, anti-lock brake systems, and telematics communication units (TCUs)
Industrial:
Control circuits in industrial robots, precision machine tools, FA control equipment, measuring instruments, and servers

Product Features:

1. Small size, high precision thin film chip resistor, which achieves the industry’s most robust ESD protection, for improved electro-static performance and accuracy in control circuits

Small size and high precision chip resistors are required for the miniaturization of ECUs as well as to achieve increased sensor accuracy needed in autonomous driving technologies. In addition, together with the increasing use of electronics in vehicles, sudden ESDs can cause malfunctions and breakdowns of equipment. ESD measures are therefore required. The structure of the resistive film in conventional compact thin film chip resistors is prone to instantaneous over-voltage occurrences such as ESDs, resulting in local high-loads. This, in turn, causes the resistors to break down more easily. The compact, high precision thin film chip resistor, which achieves the industry’s highest ESD performance, was developed based on Panasonic’s proprietary thin film formation technology in order to decrease local voltage loads due to over-voltage. In addition to providing highly accurate control of input and output signals in amplifier and control circuits, the company’s new thin film chip resistor makes it possible to do away with some of the equipment and restrictions on handling that were necessary as part of the mounting process of thin film resistors in order to reduce ESDs.

2. Heat shock performance and long-life time make the new chip resistor capable and suitable for automotive applications

In environments with wide temperature range, thermal stress due to the difference in the coefficient of linear expansion between the chip resistor and the mounting board is repeatedly applied, causing cracks in the solder fillets[3], eventually resulting in a variation in resistance. Long-term use was therefore an issue. By making use of Panasonic’s proprietary electrode structure which incorporates a buffer layer inside the electrode, this new product suppresses crack propagation occurring in the solder fillets to achieve thermal shock resistance appropriate for automotive applications. It is suitable for equipment such as integrated electromechanical modules which require to be operated in environments that are subject to extreme temperature fluctuations or over long periods of time.

3. Superior sulfidation resistance for improved reliability in control circuits
Sulfur compounds are present in various forms in the atmosphere: automobile exhaust gas, hot spring sulfur gas, etc. Exposing a chip resistor to sulfur compounds causes sulfidation of the electrodes, which may result in a variation of the resistance value. In recent years, demand for sulfidation-resistant resistors has been increasing in order to improve the long-term reliability and safety of various automotive and industrial equipment control circuits. By selecting electrode materials highly resistant to sulfidation and making use of its proprietary methods, Panasonic has developed a resistor that offers superior sulfidation resistance for improved reliability in control circuits. The resistor is also suitable for use in industrial robots that require sulfidation resistance.

Basic Specifications:

Series name ERA2V Series ERA3V Series ERA6V Series
Chip size (mm)
Chip size (inch)
1005
0402
1608
0603
2012
0805
Rated power [W] 0.063 0.1 0.125
Limiting element voltage [V] 25 75 100
Resistance range [Ω] 47 to 100k 47 to 330k 47 to 1M
Resistance tolerance [%] ± 0.05, ± 0.1
Temperature coefficient of
resistance (T.C.R.) [× 10-6/°C]
± 5, ± 10, ± 15, ± 25
Category temperature range [°C] -55 to 155

* Thin film chip resistor sizes available: 0402, 0603, and 0805.

* The resistance tolerance and temperature coefficient of resistance (T.C.R.) vary depending on the resistance range.

Term Definitions:

[1] Electro-Static Discharge (ESD)
Phenomenon in which the accumulated charge (static electricity) resulting from the friction and separation of materials is discharged at once upon contact with a conductive material. Such discharges may damage electronic components and circuits.
[2] Human Body Model (HBM)
The ESD models include the Charged Device Model (CDM), the Machine Model (MM), and the Human Body Model (HBM). The HBM is the most popular model for evaluating electronic components. It is used as a model for discharges from the human body or charged materials to electronic components.
[3] Solder Fillet
When mounting electronic components, the electrodes of the electronic components are soldered onto the copper pattern of a printed circuit board using heat-melted solder. Once an electronic component has been soldered, the triangular solder portion joining the electrode of the electronic component to the copper pattern of the printed circuit board is called “solder fillet.”

Related

Recent Posts

Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

12.11.2025
1

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
2

Molex Releases Industry-First Quad-Row Board-to-Board Connectors with EMI Shields

6.11.2025
12

Capacitor Lead Times: October 2025

6.11.2025
75

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
21

Würth Elektronik Expands its MagI³C-VDMM MicroModules

5.11.2025
15

Littelfuse Releases Load-Powered Compact Relay

5.11.2025
16

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
12

Samtec Expands Offering of Slim, High-Density HD Array Connectors

30.10.2025
10

Upcoming Events

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 13
11:00 - 11:30 CET

DC/DC Converters in Automotive Applications

Nov 18
November 18 @ 12:00 - November 20 @ 14:15 EST

Design and Test of Non-Hermetic Microelectronics

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version