Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces New Automotive Grade BMS Signal Transformer

    Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

    YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

    Bourns Introduces 1206 Multilayer Common Mode Filters

    KYOCERA AVX Presents Chip Antennas for SiP Market

    Chinas MLCC Makers Reach 10% Market Share

    Wk 24 Electronics Supply Chain Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces New Automotive Grade BMS Signal Transformer

    Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

    YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

    Bourns Introduces 1206 Multilayer Common Mode Filters

    KYOCERA AVX Presents Chip Antennas for SiP Market

    Chinas MLCC Makers Reach 10% Market Share

    Wk 24 Electronics Supply Chain Digest

    Würth Elektronik Releases Long Life SMT nano and microSD Card Connectors

    Glass Core Technology Breakthrough Potential for High-Speed Interconnects

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Quantum-Mechanics Inductors Open Doors to Miniaturisation and Spin–Electronic Based Systems

8.10.2020
Reading Time: 7 mins read
A A
Emergent inductor in which the coil structure is replaced by a helical spin structure. Source: University of Tokyo

Emergent inductor in which the coil structure is replaced by a helical spin structure. Source: University of Tokyo

Published in Nature magazine, Yokouchi et al. researchers report a quantum-mechanical inductor, called an emergent inductor, that uses the electric field produced by the current-driven dynamics observed for intricate structures of magnetic moments (spins) in a magnet. Inductors are hard to miniaturize because their effectiveness is proportional to their size. An approach based on quantum mechanics could overcome this issue, offering many potential applications.

One of the fundamental components of electrical circuits is the inductor, which provides inductance (opposition to changes in electric current). Conventional inductors consist of a coil of wire wrapped around a central core. Unfortunately, because the inductance of such devices is proportional to their cross-sectional area, it is difficult to miniaturize them while keeping a reasonably high inductance. Yokouchi1 et al. report a quantum-mechanical inductor, called an emergent inductor, that uses the electric field produced by the current-driven dynamics observed for intricate structures of magnetic moments (spins) in a magnet. Notably, this device has an inductance that is inversely proportional to its area and does not require a coil or a core — characteristics that are highly desirable for practical applications.

RelatedPosts

Bourns Introduces New Automotive Grade BMS Signal Transformer

Hirose Unveils Compact Waterproof Version of IEC-Compliant ix Industrial Connector

YAGEO Releases High-Sensitivity Residual Current Detectors for Safer EV Charging

Emergent electromagnetism refers to electromagnetism in which the generated electric and magnetic fluxes are described by a concept in quantum mechanics called a Berry phase2. Physical systems that exhibit emergent electromagnetism include magnetic systems that have non-collinear spin structures, whereby the direction of magnetization varies with the position of the spins. When electrons flow along such structures, they can become strongly coupled to the local arrangement of spins and acquire a Berry phase. This phase then acts as an effective electromagnetic field, termed an emergent field3.

For instance, an emergent magnetic field arises when electrons flow through what are known as topological non-collinear spin structures, those with a particular topology that makes them robust against small distortions or perturbations. The generated magnetic field leads to an extra signal in voltage measurements — known as Hall measurements — that is induced by a physical phenomenon called the topological Hall effect4,5. Given the complex nature of such spin structures, this voltage signal offers a convenient way to explore topological magnetic states in a wide range of materials6,7.

By contrast, an emergent electric field arises from the dynamics of non-collinear spin structures. For example, such a field is generated when a magnetic field drives the motion of domain walls8 — the boundaries between domains that have different magnetization orientations in magnetic materials. In 2019, it was shown theoretically that an emergent electric field could also be produced by the current-driven dynamics of non-collinear spin structures9. More spectacularly, it was predicted that this field would generate an inductance that is proportional to the rate of change of the current density. Because this density would be inversely proportional to the cross-sectional area of the device, the emergent inductance would increase with decreasing area, in sharp contrast to the situation in ordinary inductors (Fig. 1).

figure 1
Figure 1 | Conventional and emergent inductors. Electronic devices known as inductors resist changes in electric current — a property called inductance. a, A conventional inductor comprises a coil of wire wrapped around a central core, and has an inductance that is proportional to its cross-sectional area. b, Yokouchi et al.1 have produced an inductor, termed an emergent inductor, that uses intricate structures of magnetic moments (spins) in a magnet. A particular arrangement of spins, known as a helical spin structure, is shown here. The authors’ device has an inductance that is inversely proportional to its cross-sectional area, paving the way for miniaturized inductors that do not require a coil or a core.

Yokouchi and colleagues exploited this idea using a micrometre-scale magnet made of Gd3Ru4Al12 (Gd, gadolinium; Ru, ruthenium; Al, aluminium) that contains various non-collinear spin structures, such as helical, conical and fan-shaped structures. They selected this material because it has a weak magnetic anisotropy (directional dependence of magnetic properties), and because its spin structures have a short pitch (spatial periodicity). Spins can move relatively freely under a weak magnetic anisotropy, and the emergent inductance is inversely proportional to the pitch length9.

The authors investigated the emergent inductance of their inductor using a technique called lock-in detection. They controlled the spin-structure state of the device by altering the temperature and strength of an applied magnetic field, and carried out measurements on different states. They also varied the length, width and thickness of the device, to confirm reproducibility and exclude the possibility that the observed signal was caused by external factors, such as the presence of contact electrodes.

Most strikingly, Yokouchi et al. observed a large emergent inductance (approximately –400 nanohenries), comparable to that of a conventional inductor, for a device of about one-millionth the volume of such an inductor. By changing the spin-structure state of the device, the authors clarified the correspondence between the emergent inductance and the non-collinearity and dynamics of the spin structures. This correspondence is well explained by the previously mentioned mechanism for emergent inductance.

For example, Yokouchi and colleagues discovered that the current-driven dynamics of the helical spin structures are responsible for the large emergent inductance. By contrast, the fan-shaped structures yield a much lower inductance because their local angular variations are much smaller than are those of the other structures. Moreover, the authors found that the sign of the emergent inductance can be switched between positive and negative by controlling the direction of spin-structure motion, also in striking contrast to ordinary inductors.

Yokouchi and colleagues’ work is important for several reasons. First, it offers a scalable approach for developing miniaturized high-inductance inductors, which could be used in many micro- or nanoscale electronic devices and integrated circuits. Such inductors would also be much simpler in design than are conventional inductors, because a coil and a core would not be needed. Second, the work opens up exciting opportunities for constructing highly efficient hybrid spin–electronic circuits and systems. And third, it serves as proof that a fundamental concept in quantum mechanics — a Berry phase — can lead to real-world applications.

However, practical uses of such emergent inductors will need further breakthroughs. One major challenge is to develop inductors that act at room temperature, rather than at the current temperatures of about 10 kelvin. Overcoming this limitation will require extensive exploration of potential materials, especially to find a magnet in which short-pitch non-collinear spin structures can be readily stabilized and manipulated at room temperature. Developing a scheme for adding these inductors to integrated circuits will also be essential for applications. Nevertheless, Yokouchi et al. have made a key discovery that could lead to future engineering efforts in electronic devices, circuits and systems, while establishing an inspiring bridge between the world of quantum mechanics and modern electronics.

Nature 586, 202-203 (2020) doi: 10.1038/d41586-020-02721-7

References

  1. 1.Yokouchi, T. et al. Nature 586, 232–236 (2020).
    • Article
    • Google Scholar
  2. 2.Berry, M. V. Proc. R. Soc. Lond. A 392, 45–57 (1984).
    • Article
    • Google Scholar
  3. 3.Xiao, D., Chang, M.-C. & Niu, Q. Rev. Mod. Phys. 82, 1959–2007 (2010).
    • Article
    • Google Scholar
  4. 4.Neubauer, A. et al. Phys. Rev. Lett. 102, 186602 (2009).
    • PubMed
    • Article
    • Google Scholar
  5. 5.Schulz, T. et al. Nature Phys. 8, 301–304 (2012).
    • Article
    • Google Scholar
  6. 6.Vistoli, L. et al. Nature Phys. 15, 67–72 (2019).
    • Article
    • Google Scholar
  7. 7.Kurumaji, T. et al. Science 365, 914–918 (2019).
    • PubMed
    • Article
    • Google Scholar
  8. 8.Yang, S. A. et al. Phys. Rev. Lett. 102, 067201 (2009).
    • PubMed
    • Article
    • Google Scholar
  9. 9.Nagaosa, N. Jpn. J. Appl. Phys. 58, 120909 (2019).
    • Article
    • Google Scholar

Related

Source: Nature

Recent Posts

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
1

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
20

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
20

Understanding Switched Capacitor Converters

9.6.2025
63

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
33

What Track Width To Use When Routing PCB

6.6.2025
28

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
20

Bourns Releases Automotive Impedance Matching Transformer

6.6.2025
11

5th PCNS Conference Registration Now Open!

5.6.2025
29

Capacitance Definition of Non-Linear Voltage Dependent Capacitors

5.6.2025
31

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version