Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
Reading Time: 3 mins read
A A

The study published in ACS Nano Journal (DOI: 10.1021/acsnano.5c00917) presents the design and fabrication of high-performance zinc-ion microcapacitors hybrid supercapacitors (ZIMCs) using 3D gold (Au) interdigitated electrodes (IDEs) as porous current collectors.

The 3D Au IDEs, fabricated using a dynamic bubbling electrodeposition technique, are loaded with zinc (Zn) as the anode and a hybrid activated carbon (AC) coated with PEDOT (AC-PEDOT) as the cathode.

RelatedPosts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

Paumanok Releases Capacitor Foils Market Report 2025-2030

The resulting ZIMCs exhibit enhanced charge storage performance, with the 3D Au Zn//AC-PEDOT configuration demonstrating a significant increase in CV area compared to planar counterparts.

The ongoing evolution of wearable and implantable technologies has heightened the demand for compact, high-performance energy storage devices. Zinc-ion microcapacitors (ZIMCs) have emerged as promising candidates by merging battery-type and capacitor-type charge storage mechanisms.

Despite their potential, challenges in electrode material optimization and device architecture have hindered their widespread adoption. This article explores an innovative approach leveraging porous 3D interdigitated current collectors and hybrid microcathodes to enhance ZIMC performance.

Key Points

  1. Advanced Electrode Architecture: Introduction of 3D gold interdigitated electrodes (3D Au IDEs) as porous current collectors.
  2. Hybrid Microcathodes: Utilization of zinc (Zn) anodes coupled with activated carbon coated with PEDOT (AC-PEDOT) cathodes.
  3. Fabrication Technique: Application of a microplotter technique for precise material deposition.
  4. Performance Metrics: Achieved areal capacity of 1.3 μAh/cm², peak areal energy of 1.11 μWh/cm², and peak areal power of 640 μW/cm².
  5. Enhanced Device Stability: Improved long-term cycling stability and superior charge storage capabilities.

Extended Summary

Zinc-ion microcapacitors (ZIMCs) are pivotal for powering next-generation compact electronics due to their hybrid energy storage mechanism, combining the benefits of high energy density from batteries and high power density from capacitors. Traditional planar electrode structures limit performance due to restricted ion transport pathways and suboptimal material utilization.

This study introduces a novel design employing 3D Au IDEs as porous current collectors. These collectors are fabricated using an advanced microplotter technique that allows precise layering and patterning on a ceramic substrate. The Zn anode and AC-PEDOT cathode are sequentially deposited onto these porous structures, enhancing the electrode-electrolyte interface and facilitating faster ion diffusion.

Electrochemical analyses, including cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) tests, reveal that the 3D Au IDE-based ZIMCs significantly outperform traditional planar designs. The devices exhibit a marked increase in both capacitive-controlled and diffusion-controlled charge storage contributions. Notably, the 3D Au Zn//AC-PEDOT ZIMCs demonstrate superior rate capability and energy density, attributed to the synergistic effects of the porous structure and hybrid electrode materials.

Long-term cycling tests confirm the device’s stability, with a capacity retention of up to 78% after 5000 cycles. The incorporation of PEDOT onto the AC cathode enhances pseudocapacitive behavior, further boosting overall performance. Electrochemical impedance spectroscopy (EIS) indicates reduced charge transfer resistance, affirming efficient charge transport within the 3D porous framework.

Conclusion

The integration of 3D porous Au IDEs with hybrid AC-PEDOT cathodes presents a transformative approach in micro-scale energy storage. This architecture not only optimizes charge storage capacity and cycling stability but also sets a new benchmark in the performance of ZIMCs. This work paves the way for the development of high-performance, compact energy storage solutions critical for future wearable and implantable electronic devices.

Read the full article:

Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors, Yujia Fan, Nibagani Naresh, Yijia Zhu, Mingqing Wang, and Buddha Deka BoruahACS Nano 2025 19 (13), 13314-13324 DOI: 10.1021/acsnano.5c00917

Related

Source: ACSnano Journal

Recent Posts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
1

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
8

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
2

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
39

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
37
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
18

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version