Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

    Transient Suppression Guide

    Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

    October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

    Wk 46 Electronics Supply Chain Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Researchers Proposed Novel 3D Porous Alumina Ta-Nb Oxide Structure for High Energy Electrolytic microCapacitors

3.7.2024
Reading Time: 6 mins read
A A

Researchers from Brno University of Technology; Czech Republic, Tarragona University; Spain and Hokkaido University; Japan proposed novel 3D nanostructured electrodes for capacitors based on porous-anodic-alumina-templated Ta-Nb-alloy/oxide coatings via the magnetron sputtering/anodizing.

Abstract

RelatedPosts

Vishay Extends Automotive TO-220 Thick Film Power Resistors with 30W Option

Transient Suppression Guide

Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

The Ta-52at.%Nb thin alloy films were magnetron sputter-deposited over a low-aspect ratio nanoporous anodic-alumina template formed in 0.05 M tartaric acid solution at 250V and modified by the pore-widening technique to enlarge the pores up to ~500 nm. The alloy coated the pores evenly, thus forming a 3D continuous conducting nanofilm on the template.

Partially anodizing the templated alloy in a borate buffer solution of pH 7.5 generated a compact amorphous mixed-oxide anodic film thickening proportionally to the applied voltage. It was revealed that the oxide on the Ta-52at.%Nb alloy grows with a slower migration of Ta5+ ions relative to Nb5+ ions, resulting in mixing Ta2O5 and Nb2O5 in the film depth and forming a few-nm-thick Nb2O5 outmost layer.

The unique migration of Ta4+, Ta3+, Nb4+, and Nb3+ ions is assumed accountable for forming corresponding suboxides in the 3D anodic film in contrast to a flat Ta-52at.%Nb alloy film used as a reference. The 3D anodic films behave as an n-type semiconductor with a low donor density Nd = ~2×1018 cm−3, appropriate for dielectric applications. An unusual two-layered structure with a sharp electrical interface revealed in the 3D oxide films anodized to 30–130 V, comprising a low resistivity layer superimposed on the high-resistivity layer, is explained by an immobile negative space charge in the outer film part.

The air-annealing at moderate temperatures releases the space charge and transforms the two layers into a high-resistivity single layer having substantially improved dielectric properties and thermostable (up to 250 °C) capacitance of 1.2 uF cm−2 achieved for the film anodized to practical 50 V. The 3D films having up to 4.5 times enlarged effective surface area can be utilized as novel metal/oxide nanostructured electrodes for electrolytic microcapacitors suitable for classical electronic circuits and energy-storage applications.

Introduction and Scope of the Research

Among the various engineered nanostructured materials, 3D nanostructures have become most appropriate for constructing high-performance nano- and microdevices. They seem indispensable for designing electrodes for electrochemical energy conversion and storage devices, including various types of capacitors, which ideally should combine high energy storage and power density.

(a, b) Surface-view SEM images and schematics of corresponding cross-sections of a 3D Ta-52at.%Nb alloy anodized to (a) 50 V and (b) 130 V. (c) Schematic views explaining the impact of annealing and repeated anodizing on the thicknesses of the high-Rp and low-Rp layers in the 3D Ta-52at.%Nb alloy films anodized to 50 V and then 60 V. Source: https://doi.org/10.1016/j.surfcoat.2024.131042

Electrolytic capacitors are particularly suitable in electronic circuits for passing or bypassing signals, noise filtering, or decoupling. Besides, because of their potential for a large specific volumetric capacitance, electrolytic capacitors can store large amounts of energy, substantially overperforming electrostatic capacitors in energy-storage applications and supercapacitors in dealing with current fluctuations. Tantalum and niobium capacitors with its Ta2O5 respcetively Nb2O5 dielectric layers have been proved as one of the most reliable and high energy density capacitor technologies.

In pursuit of energy storage devices and systems smaller and lighter, the development of 3D nanostructured electrolytic capacitors may contribute substantially to the future high-yield production of large-value electrolytic microcapacitors suitable for on-chip integration. It should be noted that the challenge cannot be met with the ALD approach because it is not appropriate for depositing metal layers and any layers thicker than a few nanometers.

In the present work, we have developed an alternative, ALD-unemploying, facile, and highly reproducible technology for 3D nanostructured electrodes for electrolytic microcapacitors that combines the formation of relatively large-nanopore PAA templates with the DC magnetron sputter-deposition of metal or metal-alloy layers and subsequent partial anodizing of the deposit for forming continuous anodic-oxide layers of various thicknesses to serve as the capacitor dielectric.

To this end, we adopted a set of technological, electrical, and electrolytic conditions for forming a low-aspect-ratio PAA template in which the pore population density, pore size, and pore depth were balanced to achieve a substantial rise in the open film surface. Recently, niobium capacitors were developed and became an alternative and competing technology for tantalum electrolytic capacitors.

In the present work, we mixed tantalum with niobium to create a solid solution with approximately equal concentrations of the components, striving to improve the properties of individual metal oxides toward better-quality dielectrics based on previous reports justifying the advantages of such mixing.

For the first time, the Ta-Nb alloy was magnetron-sputter deposited over the PAA template in such a way that it conformally coated the pores, leaving the pore necks unblocked by the deposit and allowing anodizing voltages up to 130 V. The PAA-templated, anodized, and annealed alloy layers were examined by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), and Mott-Schottky analysis to gain an insight into the formation-structure-property relationship of these unique 3D nanostructures and assess their applicability as the electrodes for electrolytic microcapacitors.

Summary and Conclusions

  1. The Ta-52at.%Nb alloy coatings were magnetron sputter-deposited and partially anodized over a PAA template with 500 nm pores to form high-quality continuous 3D alloy/oxide nanofilms of up to 4.5 times enlarged surface area.
  2. The anodic films grow by migration of cations and anions, with slower migration of Ta5+ ions relative to Nb5+ ions, creating mixed oxides in the film depth. The unusual migration of Ta4+, Ta3+, Nb4+, and Nb3+ ions forms several suboxides in the 3D anodic-oxide nanofilm.
  3. The anodic films behave as an n-type semiconductor with low donor densities Nd = ~2×1018 cm−3, appropriate for dielectric applications.
  4. The two-layered structure revealed for the 3D nanofilms anodized above 30 V transforms into a single high-resistivity (~100 MΩ cm2 nm−1) layer after air annealing at temperatures over 200 °C due to releasing the negative space charge from the outer film part.
  5. The capacitance of the 3D oxide nanofilm formed by anodizing to practical 50 V is 1.2 uF cm−2 and independent of annealing temperature, while the anodic oxide becomes increasingly dielectric with rising annealing temperature above 200 °C.
  6. The coatings developed here may be utilized as novel 3D nanostructured electrodes/dielectrics for electrolytic microcapacitors suitable for traditional electronic circuits and energy-storage applications. Gas-sensing, superhydrophobic, or biomedical effects may also arise in these 3D nanofilms, similar to some previously reported self-organized anodic oxides on valve metals.

Read the complete article under link here:

A. Mozalev, M. Bendova, F. Gispert-Guirado, et al., Porous anodic-alumina-templated Ta-Nb-alloy/oxide coatings via the magnetron-sputtering/anodizing as novel 3D nanostructured electrodes for energy-storage applications, Surface & Coatings Technology (2023), https://doi.org/10.1016/j.surfcoat.2024.131042

Related

Source: Surface & Coatings Technology

Recent Posts

Rubycon Releases High Capacitance Radial Lead Aluminum Electrolytic Capacitors

18.11.2025
13

October 2025 ECIA US Components Sales Sentiment Remains Strong but Weakens in November

18.11.2025
11

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
57

Skeleton Opens SuperBattery Factory in Finland 

12.11.2025
22

ESR of Capacitors, Measurements and Applications

7.11.2025
126

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
104

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
141

Paumanok Unveils Aluminum Capacitor Foils World Markets Study 2025-2030

6.11.2025
20

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version