Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
Reading Time: 3 mins read
A A

Skeleton’s GrapheneGPU, has revolutionized AI data center energy efficiency by reducing energy consumption by 44% while simultaneously enhancing computing power by 40%.

Skeleton Technologies, a global leader in high-power energy storage, introduces GrapheneGPU, a high-performance system designed to address the critical challenge of AI growth: energy inefficiency and limitations in power infrastructure.

RelatedPosts

Skeleton Supercapacitors Contribute to Sustainable AI

Skeleton is Opening a New Research and Development Center in Finland 

Skeleton Supercapacitors Power New IndyCar Hybrid Racing

Skeleton’s proprietary Curved Graphene material used by supercapacitors significantly reduces AI energy consumption by up to 45% and lowers power connection requirements by 44%, while simultaneously enhancing computing performance in FLOPS by 40%.

By substantially reducing energy use and peak power demand, these improvements lead to proportional reductions in both capital investments and operational costs in AI infrastructure.

GrapheneGPU has successfully undergone validation under the most demanding power profiles set by leading hyperscalers. Initial shipments are scheduled to commence from Skeleton’s German facility in June 2025. US manufacturing expansion is anticipated for the first quarter of 2026 to meet the growing international demand.

AI data centers currently consume up to twice the energy they require. Inefficiencies stemming from limited grid capacity, infrastructure constraints, and intermittent outages continue to accumulate. According to the International Energy Agency, global electricity consumption by AI data centers is projected to reach 945 TWh by 2030. The US will contribute approximately 240 TWh, while Europe will surpass 150 TWh. AI data centers are poised to become the primary drivers of electricity demand growth in both regions. Energy waste and constrained power availability are emerging as the primary obstacles to AI growth and the development of AI data centers globally.

GPUs, a key contributor to these issues, experience fluctuating power demands that can cycle between 0% and 100% within seconds. During intensive processing, they experience sharp spikes, followed by idle periods. To manage these fluctuations and avoid grid instability or equipment damage, many data centers currently rely on artificial loads, commonly known as dummy loads, during idle phases to maintain a constant power draw. While this approach stabilizes operations, it leads to significant energy losses, with up to 45% of energy wasted as heat, offering no computational benefit. Additionally, peak power availability is constrained by limited grid capacity, and the construction of new substations and transmission lines can take up to 7 years.

GrapheneGPU addresses these challenges by storing energy during idle periods and releasing it during peak demand, effectively smoothing out the fluctuations. This eliminates the need for dummy loads, reduces cooling requirements, and enables GPUs to operate more efficiently.

As AI computing and energy demands double annually, AI data centers are facing a critical bottleneck. GrapheneGPU delivers up to 40% more computing with the same energy footprint, while cutting both capital and operating costs by reducing grid upgrade needs, energy waste, and cooling, said Taavi Madiberk, CEO of Skeleton Technologies. 

“Powered by our patented Curved Graphene, this is a fundamental shift in how AI infrastructure can scale — sustainably and economically“.

GrapheneGPU, powered by Skeleton Technologies’ patented Curved Graphene, combines peak-shaving supercapacitors with AI-driven control software to smooth out GPU power spikes and significantly enhance energy efficiency. Fully compatible with existing infrastructure, it enables sustainable AI scaling while reducing reliance on additional power generation or costly grid upgrades. Validated under real-world GPU load profiles, GrapheneGPU is certified for data center peak shaving and ready for immediate deployment.

By cutting energy waste and thermal stress, it helps data centers meet performance targets without compromising environmental goals—setting a new standard for efficient, climate-resilient AI infrastructure.

Related

Source: Skeleton

Recent Posts

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
1

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
1

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
6

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
14

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
7

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
50

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
23

Bourns Releases 1500VDC Power Fuse for Photovoltaic Applications

12.6.2025
10

Vishay Extends Axial Wirewound Resistors with WSZ Lead Form

12.6.2025
13

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
29

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version