Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Credit: Institute of Science Tokyo

    Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

    Towards Green and Sustainable Supercapacitors

    Mechano-Chemical Model of Sintered Tantalum Capacitor Pellets

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics COMPLETE Library v25.8 for Keysight ADS

    Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

    Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

    Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

    2025 Top Passive Components Blog Articles

    Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

    Credit: Institute of Science Tokyo

    Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

    Towards Green and Sustainable Supercapacitors

    Mechano-Chemical Model of Sintered Tantalum Capacitor Pellets

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Smart Textiles: A Good Fit

27.2.2018
Reading Time: 3 mins read
A A

source: TTI Market Eye article

Wearables have moved beyond smart watches, fitness trackers and monitors that can measure human physiology. Wearable electronics can now merge seamlessly into ordinary clothing, becoming an organic part of what we wear. This new class of wearable electronics is being designed to meet innovative applications in the military, public safety, healthcare, sports and consumer fitness.

RelatedPosts

Modelithics COMPLETE Library v25.8 for Keysight ADS

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

Integrating electronics directly on or into textile substrates involves two major technologies: printing using conductive ink-based solutions and/or embroidering circuits and components directly onto textile substrates via conductive threads.

Let’s look at developments in both types.

Additive printing processes permits the creation of functional electronic components and circuitries. While conductive inks traditionally are used for printing on films and papers, by changing the viscosity of a conductive ink it becomes possible to print on different substrates including textiles. In general, the circuits are made using conventional inkjet printing techniques. The resulting printed circuits are stretchable, comfortable to wear, and can survive numerous cycles in a typical washing machine.

As an example, consider that U.S. team’s parkas made for the opening ceremony of the Winter Olympics in Pyeongchang, where the average temperature in February is about 20 degrees but is widely expected to drop down to single digits this year, employs stretchable conductive carbon and silver ink electrodes printed on the apparel as a hidden heating component. The flexible ink conducts heat and is bonded to the inside of the Ralph Lauren-designed jackets in the shape of an American flag. The heat is controlled by a slim battery pack and can be adjusted to a high or a low setting with up to five hours of heating available at the highest setting and up to 11 hours at the lowest setting.

Blending Electronics with Textiles
For over a decade, textile circuits have been realized by embroidering conductive yarns onto fabric. Unlike metal wires most conductive fibers are so flexible they do not crack or snap if repeatedly bent. This means they can be fed into a loom or embroidered directly onto cloth that can be worn and washed as normal. So-called “Smart Textiles” for military use improve the performance of soldiers by offering them more mobility and fast connectivity. These textiles also safeguard military personnel from visual and infrared light. What is more, integration of smart textiles in military clothing enables a control center to monitor the location, physiological condition or other vital information of the soldier on the ground. The global market for Smart Textiles for the military is expected to grow at a CAGR of around 11% through 2021, according to the research firm Market Research Future.

Percentage of e-textile players using each material type (Image Source: E-Textiles 2017-2027, IDTechEx Research

Printed and Embroidered Passives Components
It is now possible to fabricate simple circuits embedded with several kinds of passive components (e.g., resistors, capacitors and inductors). In a research paper entitled “Printed and Embroidered Electronic Passive Components” presented at the 1st PCNS Passive Components Networking Days, (12-15th Sept. 2017, Brno, Czech Republic), author Tomas Blecha of the Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia in Pilsen, Czech Republic and his colleagues from the school’s Faculty of Electrical Engineering investigated and compared the electrical parameters of printed and embroidered planar passive electronic components (the full text is available from the European Passive Components Institute here or from PCNS2017 Proceedings, pgs.80-86). The authors studied different types of inductors and capacitors including meander inductors and square-shaped spiral and Interdigital capacitors (printed on PET foil, embroidered on a textile substrate and embroidered on the textile substrate with one conductive thread).

Printed electronic components were created with silver paste on flexible foil using screen printing technology. Planar components also were created by an embroidery machine. A hybrid thread was used consisting of polyester fibers that were spun with 8 brass wires. The thread consisted of 69% brass and 31% polyester and its electrical resistance was reported to be 7.7 Ω/m.

A Bright Future
Increasing expansion of the Internet of Things is driving demand for printed and embroidered electronics on fabrics. IDTechEx estimates that the total market for printed electronics and flexible printed electronics was worth some USD 7.6 billion in 2017 and will exceed USD 46 billion in 2027. Similarly, the research firm Markets and Markets values the printed electronics market at USD 3.13 billion in 2015 and expects it to reach USD 12.10 billion by 2022, with at a CAGR of 22.38% between 2016 and 2022.

by Murray Slovick

featured image source: power to the people – new material developed by physicists in South Korea generates electricity as it moves,by Sang-Woo Kim

Related

Recent Posts

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
11

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
11

Energy-Controlled Structural Evolution of Amorphous Ta₂O₅ in Tantalum Anodes

6.1.2026
20

Jianghai Vibration‑Resistant Aluminum Capacitors Guidelines for Industrial Electronics

6.1.2026
11

2025 Top Passive Components Blog Articles

5.1.2026
48

Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

5.1.2026
25
Credit: Institute of Science Tokyo

Researchers Demonstrated 30nm Ferroelectric Capacitor for Compact Memory

2.1.2026
23

Towards Green and Sustainable Supercapacitors

30.12.2025
37

Mechano-Chemical Model of Sintered Tantalum Capacitor Pellets

29.12.2025
45

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version