Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Role of High-Q Ceramic Filters to Overcome GNSS Jamming

    Optimization of IoT for GEO NB-NTN Hybrid Connectivity

    TDK Releases Automotive Power-Over-Coax Inductor for Filters

    Advanced Conversion Announces Mass Production of 200C Film Capacitors

    VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Spark Connected and TDK Launch New Automotive In-Cabin Wireless Charging Solution

4.10.2021
Reading Time: 2 mins read
A A

Spark Connected, a global leader in developing advanced and innovative wireless power technology, announced the launch of The Beast 2.0 – an automotive in-cabin wireless charging solution with TDK’s newest pattern coil technology.

The first-generation Beast 1.0, which was Qi certified and released to market in 2018, was the industry’s first solution to come pre-certified CISPR-25 Class 5, providing unparalleled EMC performance in the market. This technology is currently deployed in model year 2021 vehicles worldwide.

RelatedPosts

TDK Releases Automotive Power-Over-Coax Inductor for Filters

TDK Expands 3-terminal Automotive SMD Chip Filters to 35V

TDK Releases 0201 High-Frequency Smallest Inductors

The new Beast 2.0, together with TDK’s pattern coil, is a 15W automotive in-cabin wireless charging solution that meets Qi v1.3 requirements. It provides class-leading EMC performance, a wide input supply range with continuous charging even during vehicle stop/start events, and superior user safety including Foreign Object Detection (FOD).

According to Ruwanga Dassanayake, COO at Spark Connected, “After the market success of The Beast 1.0, the Spark team did what they do best, and made a great solution even better. We are excited to introduce the next generation Beast 2.0 and pair it with TDK’s newest cutting-edge pattern coil technology, providing our customers with advanced features and a level of performance not available in the market today.”

TDK’s pattern coil technology leverages proven mature processes, materials and manufacturing techniques. The copper coil pattern is created by a plating process used in TDK’s power inductors for over 15 years and allows for thinner solutions over traditional wire wound coils. The ultra-thin magnetic shield utilizes manganese-zinc (Mn-Zn) ferrite that provides higher permeability (µ’) and saturation magnetic flux density (Bs) values. The ferrite shield construction makes use of a “wet” layering process resulting in thinner and non-rigid shields and eliminating the need for high tonnage pressing. These features, along with unique multi-layer coil construction, provide a uniform, automotive robust wireless charging coil.

“Wireless charging has become increasingly important for devices like smartphones, and we strive to create a world where you don’t need to carry around a charger or mobile battery, where you can charge devices by simply setting them down – inside cars, on tables in cafes or restaurants, waiting areas in stations and airports,” said Noritaka Chiyo, Subsection Head of the Communication Devices Business Group, TDK. “Thin coils will greatly contribute to this charging evolution because they can easily be installed almost anywhere – including to power automotive in-cabin charging, such as Spark Connected’s industry leading Beast 2.0 solution.”

Highlights of TDK coil technology:

  • Single coil pattern that replaces existing tri-coil solutions thus reducing part count and cost
  • Thinner, lighter weight – down to 0.75 mm thickness for 15W coil
  • Removal of charging efficiency “voids” and “valleys” over complete coil pattern

Related

Source: Business Wire

Recent Posts

Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

19.6.2025
5

TDK Releases Automotive Power-Over-Coax Inductor for Filters

18.6.2025
6

Bourns Introduces New Automotive Grade BMS Signal Transformer

17.6.2025
6

YAGEO Releases High Isolation Transformer for 1500VDC Applications

12.6.2025
23

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
35

YAGEO Unveils PulseChip LAN Transformer

6.6.2025
20

Bourns Releases Automotive Impedance Matching Transformer

6.6.2025
11

5th PCNS Conference Registration Now Open!

5.6.2025
30

Bourns Releases Noise Suppression Common Mode SMD Inductors

4.6.2025
16

Passive Electronic Components Lead-times Update

4.6.2025
75

Upcoming Events

Jun 24
16:00 - 17:00 CEST

Limitations of PSFB converters and improvements by a variable inductor ft. Sam Ben-Yaakov

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version