Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Conductive Polymer Capacitor Market and Design‑In Guide to 2035

    TDK Releases High Performance 105C DC Link Film Capacitors

    YAGEO Offers Automotive MOVs for EV and AI power

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK introduces soft-termination MLCCs with low ESR

27.11.2019
Reading Time: 2 mins read
A A

source: TDK news

Apr 17, 2018

RelatedPosts

KEMET Design it Day: Capacitors and Inductors Selection Guide for Decoupling And Filtering

How to determine and measure MLCC ripple current and ESR

Degradation of ESR in Polymer Tantalum Capacitors during High Temperature Storage BEST PAPER AWARD

TDK Corporation has developed the industry’s first soft-termination MLCCs with low ESR. The new CN series features terminal electrodes with a conductive resin layer that provides high mechanical robustness to protect against board flexure. At the same time, the new MLCCs offer a low ESR that is comparable to that of conventional MLCCs.

The CN series offers capacitance values ranging from 2.2 µF to 22 µF and rated voltages from 16 V to 100 V. Based on X7R dielectric material commercial grade and automotive grade types of the new MLCCs are available. The latter are qualified to AEC-Q200. Mass production and sales of the first types was launched in April 2018.

Soft-termination MLCCs, which are able to withstand the stress from board flexure, are an effective way to prevent short circuits when used in battery lines. Conventional designs that coat the electrodes completely with resin, however, lead to higher ESR and losses. TDK has achieved the low terminal resistance values by applying the conductive resin layer only where the terminal electrode comes into contact with the PCB. Thanks to the low resistance of the terminal electrodes of the new CN series these MLCCs are suitable for battery lines in automotive and industrial robot applications, where they help to improve system reliability. The capacitors can also be used in automotive ECUs, advanced driver assistance systems (ADAS), and automated driving systems. TDK offers a broad portfolio of MLCCs for a wide range of applications. TDK will continue to place a special focus on the development of technologically superior automotive grade MLCCs.

Main applications

  • Battery lines of automotive and industrial robot applications
  • Automotive ECUs
  • Advanced driver assistance systems (ADAS), automated driving systems

Main features and benefits

  • Low ESR comparable to that of conventional MLCCs
  • High mechanical robustness to protect against board flexure
  • Qualified to AEC-Q200

Key data

Type Temperature characteristic Rated voltage [V] Capacitance[µF] Dimensions [mm]
CN*6P1X7R2A475K 1) X7R 100 4.7 3.2 x 2.5 x 2.5
CN*5L1X7R1N225K 1) 75 2.2 3.2 x 1.6 x 1.6
CN*6P1X7R1H106K 1) 50 10 3.2 x 2.5 x 2.5
CN*6P1X7R1H475K 1) 4.7 3.2 x 2.5 x 2.5
CN*5L1X7R1H475K 1) 3.2 x 1.6 x 1.6
CN*5L1X7R1H225K 1) 2.2 3.2 x 1.6 x 1.6
CN*5L1X7R1C106K 1) 16 10 3.2 x 1.6 x 1.6
CN*6P1X7R1E226K 2) 25 22 3.2 x 2.5 x 2.5
CN*5L1X7R1E106K 2) 10 3.2 x 1.6 x 1.6

*Placeholder for either of the following: A = Automotive grade; C = Commercial grade
1) Production begin: April 2018
2) Production begin: July 2018 and onward

Related

Recent Posts

Passive Components in Quantum Computing

22.1.2026
12

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
12

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
25

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
24

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
67

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
42

YAGEO Offers Automotive MOVs for EV and AI power

19.1.2026
25

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
33

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
73

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version