Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK tech article Solutions to silencing of DC-DC converters by measures against acoustic noise in power inductors

1.12.2017
Reading Time: 2 mins read
A A

source: TDK technical article

Products such as laptop and tablet PCs, smartphones, television sets, and automotive electronic devices sometimes make high-pitched sounds when they are running. This is a phenomenon known as “acoustic noise” and is sometimes caused by passive components including capacitors and inductors. The mechanics in acoustic noise are different between capacitors and inductors, but acoustic noise in inductors is particularly complex as it involves a mix of factors. This article introduces some causes of and effective measures against acoustic noise in power inductors, which are main components in power circuits of devices such as DC-DC converters.

RelatedPosts

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

Würth Elektronik Introduces Product Navigator for Passive Components

Panasonic Passive Components for Reliable Robotic Arms

Causes of acoustic noise in power inductors
Factors such as intermittent operations, frequency variable modes, and load changes generate vibrations of audible frequencies
Sound waves are elastic waves that pass through air and a human hears the frequency domain of about 20 to 20 kHz. The main bodies of power inductors of DC-DC converters vibrate when alternating currents and pulse waves of frequencies in the audible range flow, and this results in acoustic noise which is sometimes called “coil whine” (Figure 1).

Figure 1: The mechanics of the acoustic noise in power inductors

Figure 1: The mechanics of the acoustic noise in power inductors

Power inductors of DC-DC converters are one of the causes of sounds and noises along with the increasing performance of electronic devices. DC-DC converters attain stable direct currents of fixed voltages by creating pulsed currents from ON/OFF statuses with switching elements and controlling the lengths (pulse widths) of the ON times. This is known as “PWM (pulse width modulation)” and is widely used as the mainstream method for DC-DC converters.

However, the switching frequencies of DC-DC converters are high ranging from several 100 kHz to several MHz, and the vibrations of these frequencies cannot be heard as sounds and noises exceed the human audible range. This leaves the question of why power inductors of DC-DC converters generate acoustic noises.

Vibrations that occur in the main bodies of power inductors generate acoustic noise through currents of frequencies in the audible range flowing in. Below are causes of the vibrations and the causes of amplified sounds and noises.

Causes of vibrations

  1. Magnetostriction (magnetic strain) of the magnetic core
  2. Attraction due to magnetization of the magnetic core
  3. Vibrations in the winding due to leakage flux

Causes of amplified sounds and noises

  1. Contact with other components
  2. Effects on surrounding magnetic bodies due to leakage flux
  3. Matching with natural vibration frequencies of entire sets including substrates

 

Continue to read the full TDK article HERE

Related

Recent Posts

Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

15.1.2026
17

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
40

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
46

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

13.1.2026
21

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
60

Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

9.1.2026
61

Bourns SSD‑1000A AEC‑Q Digital Current Sensors

8.1.2026
46

YAGEO High‑Capacitance X7R Automotive MLCC Extensions

8.1.2026
60

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
294

Upcoming Events

Jan 21
18:00 - 18:45 CET

To Rogowski or not to Rogowski

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version