Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    SCHURTER Introduces Reliable Arc-Free Switching Technology

    Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

    Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

    Hirose Releases High Current Vibration-Resistant Connectors

    Researchers Presents High-Performance Carbon-Based Supercapacitors

    Hirose Launches World’s Lowest Profile and Narrowest Pitch FPC Connector

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK tech article Solutions to silencing of DC-DC converters by measures against acoustic noise in power inductors

1.12.2017
Reading Time: 2 mins read
A A

source: TDK technical article

Products such as laptop and tablet PCs, smartphones, television sets, and automotive electronic devices sometimes make high-pitched sounds when they are running. This is a phenomenon known as “acoustic noise” and is sometimes caused by passive components including capacitors and inductors. The mechanics in acoustic noise are different between capacitors and inductors, but acoustic noise in inductors is particularly complex as it involves a mix of factors. This article introduces some causes of and effective measures against acoustic noise in power inductors, which are main components in power circuits of devices such as DC-DC converters.

RelatedPosts

Bourns Unveils High Reliability Compact Micro Encoders

July 2025 ECST Components Survey Continue with Strong Sales Sentiment

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

Causes of acoustic noise in power inductors
Factors such as intermittent operations, frequency variable modes, and load changes generate vibrations of audible frequencies
Sound waves are elastic waves that pass through air and a human hears the frequency domain of about 20 to 20 kHz. The main bodies of power inductors of DC-DC converters vibrate when alternating currents and pulse waves of frequencies in the audible range flow, and this results in acoustic noise which is sometimes called “coil whine” (Figure 1).

Figure 1: The mechanics of the acoustic noise in power inductors

Figure 1: The mechanics of the acoustic noise in power inductors

Power inductors of DC-DC converters are one of the causes of sounds and noises along with the increasing performance of electronic devices. DC-DC converters attain stable direct currents of fixed voltages by creating pulsed currents from ON/OFF statuses with switching elements and controlling the lengths (pulse widths) of the ON times. This is known as “PWM (pulse width modulation)” and is widely used as the mainstream method for DC-DC converters.

However, the switching frequencies of DC-DC converters are high ranging from several 100 kHz to several MHz, and the vibrations of these frequencies cannot be heard as sounds and noises exceed the human audible range. This leaves the question of why power inductors of DC-DC converters generate acoustic noises.

Vibrations that occur in the main bodies of power inductors generate acoustic noise through currents of frequencies in the audible range flowing in. Below are causes of the vibrations and the causes of amplified sounds and noises.

Causes of vibrations

  1. Magnetostriction (magnetic strain) of the magnetic core
  2. Attraction due to magnetization of the magnetic core
  3. Vibrations in the winding due to leakage flux

Causes of amplified sounds and noises

  1. Contact with other components
  2. Effects on surrounding magnetic bodies due to leakage flux
  3. Matching with natural vibration frequencies of entire sets including substrates

 

Continue to read the full TDK article HERE

Related

Recent Posts

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
7

SCHURTER Introduces Reliable Arc-Free Switching Technology

4.8.2025
3

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
7

Hirose Releases High Current Vibration-Resistant Connectors

4.8.2025
4

PCNS 2025 Final Program Announced!

4.8.2025
54

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
35

Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

30.7.2025
13

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
19

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
21

Samsung Releases 1000V 1812 X7R 100nF MLCC for Electric Vehicles

28.7.2025
26

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version