Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK to Build New Automotive MLCC Production Plant in Japan

10.5.2022
Reading Time: 2 mins read
A A

TDK announced construction of new MLCC production plant in Japan with focus on high-reliable automotive products.

TDK Corporation announces that it has decided to construct a new production building on the premises of the Kitakami Factory (Kitakami city, Iwate prefecture, Japan) of TDK Electronics Factories Corporation (to enhance the multilayer ceramic capacitors (hereinafter, “MLCC”) production. It is planned to start the construction of the new building at the end of this fiscal year (March 2023) and complete it in June 2024.

RelatedPosts

TDK Extends SMT Gate Drive Transformers to 1000 V

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

Currently, the popularity of electric vehicles (EV) is increasing globally, and the sophistication of motor vehicles is expanding, including automated driving technologies (ADAS) and other driver assist technologies. This further increases the power consumption of many ECUs (electric control units) and accelerates the increase of high voltages. The trend is that the number of electronic devices and components that are installed in a single vehicle is increasing, resulting in the reliability of electronic components having a greater impact on the reliability of the complete vehicle.
Alongside the electronic devices for automobiles becoming smaller and more sophisticated, the number of electronic components installed in vehicles is increasing and their use environments are becoming more extreme, which means that electronic components must be more compact, sophisticated, and reliable. It is essential that electronic components, such as MLCCs must be highly reliable, which requires a high resistance to rapid temperature variations, mechanical strength, and high voltages.

TDK has been establishing a system to increase production volume at its existing MLCC production sites and affiliate companies since last year. In order to further increase the production volume of MLCCs, TDK has decided to construct a new production building that enables comprehensive production, encompassing everything from materials to finished products at TDK Electronics Factories Corporation, Kitakami Factory. The increased production in this new building will enable TDK to satisfy growing demand from our customers.
In addition, the factory will be constructed with a facility layout that reduces energy loss, and the exhaust heat and air environment will also be improved to achieve thorough energy conservation and contribute to CO2 emission reduction.

The construction of the new production building at the Kitakami Factory is the second project that is a part of TDK’s electronic component “Monozukuri enhancement”, following the construction of a new wing at the Inakura Factory (West site) (Nikaho City, Akita Prefecture), which TDK announced recently. TDK Electronics Factories Corporation will continue to develop the electronic component business.

1. Construction site: 106-163, 2 Jiwari, Goto, Wagacho, Kitakami-shi, Iwate
2. Total floor area: Approx. 33,000 m2
3. Building structure: 4 stories
4. Main businesses: Development and manufacturing of multilayer ceramic capacitor
5. Construction start date: March 2023 (plan)
6. Completion date: June 2024 (plan)
7. Mass production start date: September 2024 (plan)
Outline of the new TDK Aautomotive MLCC product building

Related

Source: TDK

Recent Posts

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
18

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
9

Connector Industry Achieves Double-Digit Growth

19.8.2025
10

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
9

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
126

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
73

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
34

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
57

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
43

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version