Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Top 10 Connector Vendors by Product Type

    Bourns Releases High‑Q Air Coil Inductors for RF Aplications

    CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

    ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

    Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

    Component Distribution Supply Chain January 2026

    Binder Unveils M8 Flange Solder Connectors for Flexible Cabling

    Power Electronics Tools for Passives and Magnetic Designs

    Modelithics Releases Component Model Library for SIMULIA CST Studio Suite

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

The Benefits of Using Tantalum Capacitors in Electric Vehicle Applications

3.3.2023
Reading Time: 8 mins read
A A

This blog article written by Jeff Lee, KYOCERA-AVX Corporation explains the benefits of using tantalum capacitors in electric vehicle applications.

Introduction

An electric vehicle is a car powered by electricity unlike internal combustion locomotives that obtain driving energy by burning fossil fuels, they rotate the motor with electricity accumulated in the battery to obtain driving energy.

RelatedPosts

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

Electric vehicles are largely composed of on-board chargers (OBC), electric power control units (EPCUs), motors, speed reducers, and high voltage battery. The motor of an electric vehicle is a high-efficiency and high-power driving motor and has high output and rotational power. Unlike internal combustion vehicle engines, the electric motor can be made to minimize noise and vibration generation while driving.

The main control unit is the electric power control units and it is largely composed of inverters (Inverters, LDCs, VCUs).

  • Inverter: Conversion of power between high voltage battery and motor (AC<—>DC)
  • Low voltage DC-DC converter (LDC): Converted into low voltage (12 V) and supplied to electronic components in high voltage battery.
  • Vehicle control unit (VCU): A control tower that control the in-vehicle power controller.
  • On Board Charger (OBC): converts external AC power into DC power to charge a high voltage battery.
Figure 1 – EV building blocks. Image courtesy of newkidscar

Capacitor Comparison

Generally, capacitors are used for the following purposes, and differences in applicable applications occur due to differences in characteristics for each capacitor type. The purpose of the capacitor is below.

  • Coupling
  • Decoupling
  • Filtering
  • Energy storage/supply
  • Impedance matching
  • Snubbers and many more applications


As shown in the table below, the tantalum capacitor has a narrow voltage range rather than others, but has advantages of wide range capacitance value, ESR, and temperature character.

Table 1. Capacitor technologies comparison; source: KYOCERA AVX
Figure 2 – Capacitor types, and their voltage and capacitance ratings Image courtesy of resources.altium.com/

Tantalum Capacitors

Tantalum capacitor capacitance range extends up to some thousands µF. The capacitors are characterized by a high CV product per volume unit, especially when high CV powders above 200k CV/g are introduced for low voltages and above 80k CV/g for higher voltages.

The conventional solid electrolyte is MnO2, however conductive polymer types are more and more favorable due to its lower ESR and reduced ignition features. On the other hand, the MnO2 types are more robust against thermo-mechanical stress, stable electrical parameters under high temp & high humidity environments, thus high reliability and longer operation lifetime applications still uses mostly established reliability MnO2 types as the main tantalum solid capacitor technology.

Figure 3 – Tantalum structure. Divided the type of tantalum capacitor with cathode material (Manganese or Polymer); source: KYOCERA AVX
Figure 4 – Typical capacitor reliability curves

The defects in tantalum capacitors are mostly due to initial faults (infant failure region). After that, the device is exceptionally stabile in the field. (Polymer tantalum failure rate may increase due to a wear out phenomenon that can be averted with derating). These devices exhibit a very stable defect rate compared to other capacitors and due to its reliability characteristics, it is possible to ensure long term stability and reliability when using tantalum capacitors.

Electrical Vehicle Main Systems

Electrical Vehicle Traction Inverters

The purpose of DC capacitors in an electric vehicle traction inverter is to decouple the load from the DC supply. In this role, the capacitor absorbs large ripple currents generated by the switching sequence of the inverter. In general, a DC capacitor applied to a three-phase inverter can see up to 60% of an RMS load current and thus the capacitor needs to store a certain amount of energy to prevent ripple voltage.

Figure 5 – Simplified block schematic for AC/DC stage – Image courtesy of blog.knowlescapacitors.com

Thus, a capacitor with large capacity occupies a substantial space in an inverter, and because of that it is important to minimize a volume of capacitor bank and maximize power and energy density to optimize a volume of traction inverter. The most commonly used capacitors applicable to the relevant inverter are electrolytic capacitors, ceramic capacitors (MLCC), and film capacitors.

Among them, an electrolytic capacitor is the most widely used in existing motor driving applications with the lowest cost and highest energy density, but since it has a short life, limited current conductivity, and limited low frequency characteristics, it is limited to use as a DC filter capacitor. In contrast, a film capacitor is widely used as an application capacitor of an EV motor unit due to high reliability, high current conduction capability, high frequency operation, and low ESR compared to an electrolytic capacitor. However, it may not be a suitable solution for inverters seeking miniaturization due to its disadvantage of being larger than the electrolytic capacitor of the dielectric.

Another, highly preferred capacitor for the inverter is the MLCC. MLCCs can be smaller than other capacitors and can be used at high voltages. However, there is a limitation to the practical capacitance. Beyond that high capacity cannot be easily implemented due to CV limitations relative to (high) voltage ratings.

A solution that can overcome these shortcomings in some applications may be tantalum capacitors. The tantalum capacitor cannot achieve a high voltage, but it can produce a larger capacity because it is higher than MLCC in terms of capacity.

However, the voltage range of tantalum technology is limited by relatively low (but increasing) voltage rating. Generally these devices can be used as a smoothing capacitor on the front end of lower voltage IGBTs in the inverter circuit. Another use is for general purpose low to moderate voltage rated filters with large capacity and small ESR (in the case of low ESR Polymer tantalum products.

LDC (Low Voltage DC-DC Converter)

Selecting a larger capacitance value typically reduces the output ripple. However, unnecessarily large capacitance values increase the cost by increasing the dimensions of the capacitor. There is an optimization consideration of an allowed ripple value and then selecting a capacitor technology and capacitance value. Examples are shown in Table 2. below.

If for example a DC/DC converter is not compatible with low ESR capacitors, using a particularly low ESR capacitor technology may result in abnormal switching. So, if low ESR capacitors are used in the continuous mode, check the load-transient response to confirm that the output voltage is rapidly stabilized (commonly target two switching cycles).

The ripple increases in proportion to the ESR value and in inverse proportion to the CL value. In the case of an aluminum electrolytic capacitor, the ESR value is so large that a ceramic capacitor is typically connected in parallel for stabilizing and optimizing output current.

Figure 6 – 48-12 converter diagram
Table 2. – Recommended tantalum capacitor capacitance for step-up converter

Conclusion

Electric vehicles are a new platform with increased quality and reliability demands beyond existing internal combustion engine car. Optimized performance & reliability can be achieved by using suitable capacitors chosen specifically for each application.

In some use cases tantalum capacitors can be suitable for electric vehicle applications and next generation low ESR polymer tantalum help expand the number of applications allowing use of this technology.

Related

Source: KYOCERA AVX

Recent Posts

CMSE 2026 Announces Call for Presentations on High-Reliability Military and Space Electronics

28.1.2026
30

ESA Call for Papers 6th Space Passive Component Days – SPCD 2026

28.1.2026
23

Würth Elektronik Offers Halogen‑Free EMC Gaskets for Displays and Housings

28.1.2026
15

Power Electronics Tools for Passives and Magnetic Designs

27.1.2026
57

Samsung Q4 2025 Results: MLCC focus for AI, Server and Automotive

26.1.2026
73

Würth Elektronik Developed a Custom Transformer for Active Hand Orthosis

26.1.2026
38

Capacitor Technology Dossier

26.1.2026
86

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
26

Passive Components in Quantum Computing

22.1.2026
125

Upcoming Events

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version