Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Stackpole Extends Voltage of High Temp Chip Resistors

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Toshiba Launches Bipolar Stepping Motor Driver IC That Needs No Current Detection Resistors

30.1.2017
Reading Time: 3 mins read
A A

source: Business Wire news

TOKYO–(BUSINESS WIRE)–Toshiba Corporation’s (TOKYO:6502) Storage & Electronic Devices Solutions Company today announced the launch of “TB67S508FTG,” a bipolar stepping motor driver offering 40V high voltage and 3.0A current with no need for external current detection resistors. Sample shipment starts today.

RelatedPosts

Vishay Releases Miniature SMD Trimmers for Harsh Environments

Würth Elektronik Releases Push-Button and Main Switches

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

Printers, office automation equipment, surveillance cameras, banking terminals such as ATMs, banknote identification machines, amusement machines, and home appliances are being downsized to save space and improve design. Low power consumption is also growing in importance as a means to scale down IC boards and reduce internal heat in products.

The new IC integrates Toshiba’s ACDS[1] architecture, adopted previously in a unipolar stepping motor driver IC. It eliminates the need for two external resistors usually required to detect motor current. By adopting a small QFN36 package (mounting area 5 mm × 5 mm), the new IC reduces the mounting area to about 66% of that of Toshiba’s current products[2]. ACDS also reduces power loss and resistor variation errors, and contributes to low power consumption and highly precise constant current control.

Main Features of the New Product

  • No need for external resistors to detect current. ACDS, Toshiba’s original architecture, realizes highly precise constant current motor control without external resistors to detect current.
  • Lower heat generation during motor driving. A built-in output DMOS with low-on-resistance (0.45Ω (upper + lower: typ.)) reduces heat generation by 13% when the stepping motor drives operate at 1A, compared to Toshiba’s current products[3].
  • Small package. A small, high-heat-radiation QFN36 package saves space and reduces costs.
Part Number TB67S508FTG
Function Stepping motor driver
Package QFN36
I/F Clock input and phase input
Step resolution modes Full, half, quarter
Output rating (voltage) 40V
Output rating (current) 3A
Output ON resistor (upper + lower) 0.45Ω (typ.)
Power supply Support single power drive
Abnormality detection

Thermal shutdown, over current detection, low power and under voltage detection, and OSCM terminal component open / short detection

Other functions ACDS and ADMD[4]

 

Notes

1: ACDS: Advanced Current Detect System.
2: Basis for comparison. Current product: Two detection resistors (5 mm × 2.5 mm) connected to the current IC (7 mm × 7 mm) with QFN48 package. New product: (5 mm × 5 mm)
3: Compared with the current product, TB62213AFTG (maximum output rating 40V/3A)
4: ADMD: Advanced Dynamic Mixed Decay.

Related

Recent Posts

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
1

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
4

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
3

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
38

Bourns Releases High Power High Ripple Chokes

8.8.2025
24

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
8

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
31

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

6.8.2025
9

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
39

Bourns Unveils High Reliability Compact Micro Encoders

5.8.2025
8

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version