Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finlandย 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Overvoltage and Transient Protection for DC/DC Power Modules

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finlandย 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

What is a Dielectric Constant and DF of Plastic Materials?

20.10.2025
Reading Time: 16 mins read
A A

This article describes dielectric constant and dissipation factor DF of plastic polymer materials, how to calculate it and factors affecting it.


What is Dielectric Constant?

The dielectric constant (Dk) of a plastic or dielectric or insulating material can be defined as the ratio of the charge stored in an insulating material placed between two metallic plates to the charge that can be stored when the insulating material is replaced by vacuum or air. It is also called as electric permittivity or simply permittivity.

RelatedPosts

Insertion Loss and Performance in EMI Filtering

New High-K dielectric Low Loss Sulfur-Selenium Alloys

EEStor Announces Results of Phase 9 Hybrid Dielectrics Testing

And, at times referred as relative permittivity, because it is measured relatively from the permittivity of free space (ฮต0).

Dielectric constant characterizes the ability of the material to store electrical energy.

Typical values of ฮต for some referenced and organic dielectrics are:

MaterialDielectric Constant (ฮต)
Vacuum1.000
Dry Air1.0059
Foam Polyethylene1.6
Fluoropolymers2.0
Polypropylene2.1
Butyl Rubber2.3
SBR2.9
Silicone Rubber3.2
Plexiglass3.4
PVC4.0
Glass3.8-14.5
Distilled Water~80

A dielectric constant of 2 means an insulator will absorb twice more electrical charge than vacuum.

Applications include:

Use of materials in the production of capacitors used in radios and other electrical equipment. Commonly used by circuit designers to compare different printed-circuit-board (PCB) materials.
Development of materials for energy storage applications.

For example, polymer-based dielectric composites are highly desirable for applications ranging from electronic packaging, embedded capacitors, to energy storage. These composites are highly flexible with a low process temperature and they exhibit a relatively high dielectric constant, low dielectric loss, high dielectric strength.

How to Calculate Dielectric Constant?

In other words, dielectric constant can also be defined as the ratio of the capacitance induced by two metallic plates with an insulator between them, to the capacitance of the same plates with air or a vacuum between them.

An insulating material with higher dielectric constant is needed when it is to be used in E&E applications where high capacitance is needed.
If a material were to be used for strictly insulating purposes, it would be better to have a lower dielectric constant.

The dielectric constant formula is:

Formula to Calculate Dielectric Constant

Where:

  • C = capacitance using the material as the dielectric capacitor
  • C0 = capacitance using vacuum as the dielectric
  • ฮต0 = Permittivity of free space (8.85 x 10-12 F/m i.e. Farad per metre)
  • A = Area of the plate/sample cross section area
  • T = Thickness of the sample

Dielectric Constant Units: This electrical property is a dimensionless measure.
The most generally used standard tests to calculate dielectric constant for plastics are ASTM D2520, ASTM D150 or IEC 60250 (ofcourse there exist several other methods as well, but they are not discussed here).

The method includes:
A sample is placed between two metallic plates and capacitance is measured. A second run is measured without the specimen between the two electrodes. The ratio of these two values is the dielectric constant. The test can be conducted at different frequencies, often between the 10Hz and 2MHz range

  • The sample must be flat and larger than the 50mm (2 in) circular electrodes used for the measurement.

The other parameter of key importance apart of the dielectric constant is how much energy is lost inside the material during the current flow. This defines efficiency and usability of such material for the application at the given frequency range. The losses are expressed usually by DF dissipation factor that is more elaborated in article here: Dissipation Factor of Plastic Materials Explained and also add in the table below.

Polar Plastics Vs Non-polar Plastics

Dielectric properties of a polymer largely depend upon their structure. The structure determines whether a polymer is polar or non-polar and this in turn decided the electrical properties of the polymer.

  • In polar polymers (PMMA, PVC, Nylon, PC etc.), dipoles are created due to imbalance in the distribution of electrons. These dipoles tend to align in the presence of electric field. Hence, this creates dipole polarization of the material making these materials only moderately good as insulators.
  • While non-polar polymers (PTFE, PP, PE, PS) have symmetrical molecules and are truly covalent. There are no polar dipoles present in them and hence in presence of electric field does not align the dipoles. However, slight electron polarization occurs due to the movement of electrons in the direction of electric field, which is effectively instantaneous. These polymers have high resistivities and low dielectric constant.

Polar plastics have a tendency to absorb moisture from the atmosphere. Presence of moisture raises the dielectric constant and lowers the resistivity. With rise in temperature, there is faster movement of polymer chains and fast alignment of dipoles. This invariably raises the dielectric constant values for polar plastics.

Non-polar plastics are not affected by moisture and rise in temperature.

Factors Influencing Dielectric Constant

  • Frequency – Dielectric constant decreases abruptly as frequency increases
  • Moisture &Temperature
  • Voltage
  • Structure & morphology (see polar plastics vs non-polar plastics)
  • Presence of other materials in the plastic
  • Weathering and Deterioration

Dielectric Constant (ฮต) and DF Values of Several Plastics

Polymer Typeฮต Minฮต MaxDF MinDF Max
ABS – Acrylonitrile Butadiene Styrene2.703.2050190
ABS Flame Retardant2.803.007090
ABS High Heat2.405.0020350
ABS High Impact2.405.0020350
ABS/PC Blend – Acrylonitrile Butadiene Styrene/Polycarbonate Blend2.903.2070200
ABS/PC Blend 20% Glass Fiber3.103.202090
Amorphous TPI Blend, Ultra-high heat, Chemical Resistant (Standard Flow)3.503.500.0010.001
ASA – Acrylonitrile Styrene Acrylate3.303.8090340
ASA/PC Blend – Acrylonitrile Styrene Acrylate/Polycarbonate Blend3.003.4020190
ASA/PC Flame Retardant3.203.20110170
CA – Cellulose Acetate3.008.001001000
CAB – Cellulose Acetate Butyrate3.007.00100400
CP – Cellulose Proprionate3.004.0060300
CPVC – Chlorinated Polyvinyl Chloride3.006.00100200
ECTFE2.572.59130170
ETFE – Ethylene Tetrafluoroethylene2.602.606100
EVA – Ethylene Vinyl Acetate2.503.001301000
EVOH – Ethylene Vinyl Alcohol4.805.6018002200
FEP – Fluorinated Ethylene Propylene2.102.1077
HDPE – High Density Polyethylene2.302.30320
HIPS – High Impact Polystyrene2.404.80420
HIPS Flame Retardant V02.003.00550
LCP – Liquid Crystal Polymer3.303.302020
LCP Glass Fiber-reinforced3.004.004040
LCP Mineral-filled3.005.9060300
LDPE – Low Density Polyethylene2.302.3070280
LLDPE – Linear Low Density Polyethylene2.302.3034
MABS – Transparent Acrylonitrile Butadiene Styrene2.803.002.83
PA 11 – (Polyamide 11) 30% Glass fiber reinforced4.804.800.030.03
PA 11, Conductive3.009.000.050.25
PA 11, Flexible3.009.000.050.25
PA 11, Rigid3.009.000.050.25
PA 12 (Polyamide 12), Conductive3.009.000.050.25
PA 12, Fiber-reinforced3.009.000.050.25
PA 12, Flexible3.009.000.050.25
PA 12, Glass Filled3.009.000.050.25
PA 12, Rigid3.009.000.050.25
PA 46 – Polyamide 463.403.80190600
PA 46, 30% Glass Fiber4.004.602390
PA 6 – Polyamide 64.005.00100600
PA 6-10 – Polyamide 6-103.004.00400400
PA 66 – Polyamide 6-64.005.00100400
PA 66, 30% Glass Fiber3.505.601001500
PA 66, 30% Mineral filled4.005.002001500
PA 66, Impact Modified, 15-30% Glass Fiber3.404.20130200
PA 66, Impact Modified2.905.001002000
PAI – Polyamide-Imide3.907.3060710
PAI, 30% Glass Fiber4.206.50220500
PAR – Polyarylate3.303.3020200
PBT – Polybutylene Terephthalate2.904.0010200
PBT, 30% Glass Fiber3.004.0020120
PC (Polycarbonate) 20-40% Glass Fiber3.003.50975
PC (Polycarbonate) 20-40% Glass Fiber Flame Retardant3.003.809100
PC – Polycarbonate, high heat2.803.8069100
PC/PBT blend, Glass Filled3.303.90100200
PCTFE – Polymonochlorotrifluoroethylene2.003.0010250
PE – Polyethylene 30% Glass Fiber2.702.802080
PEEK – Polyetheretherketone3.203.203030
PEEK 30% Carbon Fiber-reinforced3.203.402932
PEEK 30% Glass Fiber-reinforced3.304.202020
PEI – Polyetherimide3.103.201325
PEI, 30% Glass Fiber-reinforced3.004.001553
PEI, Mineral Filled3.004.001015
PEKK (Polyetherketoneketone), Low Cristallinity Grade3.303.300.0040.004
PESU – Polyethersulfone3.504.1010140
PESU 10-30% glass fiber4.204.3070100
PET – Polyethylene Terephtalate3.004.0020200
PET, 30% Glass Fiber-reinforced3.004.001201680
PETG – Polyethylene Terephtalate Glycol3.004.0020300
PFA – Perfluoroalkoxy2.102.1022
PI – Polyimide3.103.551850
PMMA – Polymethylmethacrylate/Acrylic2.005.00200200
PMMA (Acrylic) High Heat3.204.00400600
PMMA (Acrylic) Impact Modified2.903.70300400
PMP – Polymethylpentene2.103.600.730
POM – Polyoxymethylene (Acetal)3.304.7050110
POM (Acetal) Impact Modified4.004.3050250
POM (Acetal) Low Friction3.004.002090
PP – Polypropylene 10-20% Glass Fiber2.602.601020
PP, 10-40% Mineral Filled2.302.30711
PP, 10-40% Talc Filled2.302.30711
PP, 30-40% Glass Fiber-reinforced2.602.601020
PP (Polypropylene) Copolymer2.302.3035
PP (Polypropylene) Homopolymer2.302.3035
PP, Impact Modified2.302.3035
PPA – Polyphthalamide4.304.30270270
PPA, 33% Glass Fiber-reinforced โ€“ High Flow3.703.900.0140.016
PPA, 45% Glass Fiber-reinforced4.404.600.90.2
PPE – Polyphenylene Ether2.702.7049
PPE, 30% Glass Fiber-reinforced2.902.901015
PPE, Flame Retardant2.702.70731
PPS – Polyphenylene Sulfide3.003.30430
PPS, 20-30% Glass Fiber-reinforced3.303.801032
PPS, 40% Glass Fiber-reinforced4.004.001320
PPS, Glass fiber & Mineral-filled5.005.0070580
PPSU – Polyphenylene Sulfone3.403.501750
PS (Polystyrene) 30% glass fiber2.502.50528
PS (Polystyrene) Crystal2.402.70128
PS, High Heat2.402.70128
PSU – Polysulfone3.003.20864
PSU, 30% Glass finer-reinforced3.603.704060
PTFE – Polytetrafluoroethylene2.102.1022
PTFE, 25% Glass Fiber-reinforced3.003.0055
PVC, Plasticized3.005.004001600
PVC, Plasticized Filled3.005.004001600
PVC Rigid3.004.0060200
PVDF – Polyvinylidene Fluoride6.009.002001700
SAN – Styrene Acrylonitrile2.503.4070100
SAN, 20% Glass Fiber-reinforced3.203.8010100
SMA – Styrene Maleic Anhydride2.802.804040
SMMA – Styrene Methyl Methacrylate3.203.20400400

Find commercial grades matching your electrical property target using “Property Search – Dielectric Constant” filter in Omnexus Plastics Database.

Read more about plastic materials features:

  • Flammability of Polymer Materials and UL94 Explained
  • Coefficient of Linear Thermal Expansion on Polymers Explained

Key Takeaways

  • The article discusses the Organic Material Dielectric Constant and Dissipation Factor DF in plastic polymer materials.
  • Dielectric constant (Dk) measures a material’s ability to store electrical energy compared to vacuum.
  • Factors influencing dielectric constant include frequency, moisture, temperature, and material structure.
  • Calculating dielectric constant involves measuring capacitance with and without the insulating material.
  • Different polymers exhibit varying dielectric constants, critical for applications in capacitors and energy storage.
What is the dielectric constant of plastic materials?

The dielectric constant (also called relative permittivity) is the ratio of the capacitance of a material compared to vacuum. It measures the ability of plastics to store electrical energy. Typical values range from 2.0 for PTFE to 9.0 for PVDF, while water is around 80.

Why is dielectric constant important in plastics?

It determines how plastics behave in electrical and electronic applications. High dielectric constant materials are used in capacitors and energy storage, while low values are preferred for insulation and PCB substrates.

What is the dissipation factor (DF) of plastics?

The dissipation factor (DF) measures energy loss within a dielectric material when exposed to an alternating electric field. A lower DF indicates higher efficiency and better insulation properties.

Which factors influence dielectric constant and DF?

Key factors include frequency, temperature, moisture absorption, polymer structure (polar vs. non-polar), voltage, and material morphology. Polar plastics like PVC and Nylon show higher sensitivity to moisture and temperature than non-polar plastics like PTFE or PP.

What are typical applications of dielectric plastics?

Applications include capacitors, PCB substrates, embedded energy storage, high-frequency circuits, and insulation in automotive and aerospace electronics.

How to Measure Dielectric Constant of Plastic Materials

  1. Prepare the sample

    Cut a flat plastic specimen larger than the 50 mm electrodes used in the test setup.

  2. Place between electrodes

    Insert the sample between two metallic plates connected to a capacitance meter.

  3. Measure capacitance with sample

    Record the capacitance value when the plastic sample is in place.

  4. Measure capacitance without sample

    Remove the sample and measure the capacitance of the air gap (vacuum equivalent).

  5. Calculate dielectric constant

    Use the formula: ฮต = C / Cโ‚€, where C is capacitance with the sample and Cโ‚€ is capacitance with air.

Related

Source: Omnexus

Recent Posts

Overvoltage and Transient Protection for DC/DC Power Modules

13.11.2025
21

Choosing the Right Capacitor: The Importance of Accurate Measurements

12.11.2025
37

Skeleton Opens SuperBattery Factory in Finlandย 

12.11.2025
14

RF Inductors: Selection and Design Challenges for High-Frequency Circuits

10.11.2025
49

Transformer Safety IEC 61558 Standard

7.11.2025
27

ESR of Capacitors, Measurements and Applications

7.11.2025
95

3-Phase EMI Filter Design, Simulation, Calculation and Test

6.11.2025
75
Image credit: Samtec

How to Match the Right Connector with Protocol Requirements

6.11.2025
19

Smoltek CNF-MIM Capacitors Pass 1,000h Reliability Test

6.11.2025
14

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

ยฉ EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

ยฉ EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version