Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

    Researchers Proposed Enhanced Energy Storage MLCC

    Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

    Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Stackpole Offers High Voltage Plate Resistors up to 40KV

    How to Manage Supercapacitors Leakage Current and Self Discharge 

    Qualification of Commercial Supercapacitors for Space Applications

    Experimental Evaluation of Wear Failures in SMD Inductors

    Resonant Capacitors in High-Power Resonant Circuits

    a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

    Researchers Proposed Enhanced Energy Storage MLCC

    Littelfuse Releases First Reflow-Compatible Illuminated Tactile Switch

    Vishay Unveils 5W Power Metal Strip Resistor in Compact 1206 Case Size

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
Reading Time: 3 mins read
A A

Researchers from China published results of their research Additive manufacturing of Mn-Zn ferrite planar inductors with CaO–SiO2 modified slurries: A magneto-thermal optimization approach published by Materials & Design Journal.

Introduction

RelatedPosts

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

Stackpole Offers High Voltage Plate Resistors up to 40KV

How to Manage Supercapacitors Leakage Current and Self Discharge 

The advancement of soft magnetic materials, particularly Mn-Zn ferrite powders, plays a pivotal role in enhancing the performance of integrated planar inductors.

Traditional fabrication methods, such as compression molding, often limit the design flexibility needed for customized magnetic cores. This article explores the innovative application of a multi-nozzle slurry-based printing technique to overcome these constraints, aiming to optimize both magnetic and thermal properties through additive manufacturing.

Key Points

  • Limitations of Traditional Methods: Compression molding restricts design adaptability in soft magnetic cores.
  • Innovative Printing Technique: Utilization of a multi-nozzle slurry-based printing process for Mn-Zn ferrite powders.
  • Additives for Optimization: Introduction of CaO (0.5 wt%) and SiO2 (0.05 wt%) to improve grain boundary phases.
  • Enhanced Properties: Achieving optimal microstructure, electrical resistivity, and magnetic performance through sintering at 1200°C.
  • Experimental Validation: Fabrication and testing of a prototype confirming magneto-thermal optimization capabilities.

Extended Summary

Traditional fabrication techniques for Mn-Zn ferrite powders, such as compression molding, have long been the standard in producing soft magnetic cores. However, these methods inherently limit the potential for custom designs, which are increasingly in demand for advanced electronic applications. Recognizing this limitation, the study introduces a groundbreaking multi-nozzle slurry-based printing technique tailored for commercially available Mn-Zn ferrite powders.

The innovation doesn’t stop at the printing technique. To further refine the material properties, small quantities of sintering additives—CaO (0.5 wt%) and SiO2 (0.05 wt%)—are incorporated. These additives play a crucial role in modifying grain boundary phases, which in turn enhances electrical resistivity and reduces porosity. This meticulous adjustment leads to superior microstructural attributes and magnetic properties.

Achieving the desired material characteristics requires precise thermal management. The study identifies 1200°C as the optimal sintering temperature, complemented by tailored thermal treatment conditions. This specific process results in enhanced initial permeability, improved saturation magnetization, and reduced core loss, key parameters critical for magnetic performance.

Building on these insights, the researchers have designed and fabricated a modified Mn-Zn ferrite core utilizing the composite additive manufacturing method. This new core not only integrates advanced thermal management features but also exhibits superior magnetic performance. A physical prototype of the composite inductor was produced to validate these findings experimentally. The prototype’s performance confirmed the feasibility and effectiveness of this approach in achieving magneto-thermal optimization.

Conclusion

This study showcases the potential of additive manufacturing, specifically a multi-nozzle slurry-based printing technique, in revolutionizing the fabrication of Mn-Zn ferrite magnetic cores. By incorporating strategic sintering additives and optimizing thermal treatments, the research successfully enhances both magnetic and thermal properties. The fabrication and validation of a physical prototype underscore the practical applicability of this innovative process, paving the way for more flexible and efficient designs in integrated planar inductors.

Read the full paper:

Wenjie Zhang, Qian Zhu, Huoying Tan, Jiquan Yang, Jianping Shi,
Additive manufacturing of Mn-Zn ferrite planar inductors with CaO–SiO2 modified slurries: A magneto-thermal optimization approach,
Materials & Design, Volume 257, 2025, 114438,ISSN 0264-1275,
https://doi.org/10.1016/j.matdes.2025.114438.

Related

Source: Materials and Design Journal

Recent Posts

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
14
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
9

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
7

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
17

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
40

Bourns Releases Semi-Shielded Power Inductor with Polarity Control

25.9.2025
13

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
42

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
33

Bourns Introduced 15A Compact Common Mode Choke

24.9.2025
5

AI Hardware Development and Its Consequences for Passive Electronic Components

23.9.2025
53

Upcoming Events

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version