Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    KYOCERA AVX Releases Compact High-Directivity Couplers

    Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

    Wk 18 Electronics Supply Chain Digest

    YAGEO Releases High Current SMD Common Mode Choke With Shape Core Construction

    Murata and NIMS Built New Database of Dielectric Material Properties

    Tariffs Crush Sales Sentiment in April 2025 ECST Results

    High-Density PCB Assemblies For Space Applications

    Solid State Polymer Multilayer Capacitors For High Temperature Application

    Graphene-Based BOSC Bank Of Supercapacitor Cells

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Improving Common Mode Noise Reduction while Decreasing BOM

    Die and Wire PCB Bonding Explained

    Rogowski Coil Current Sensor Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Aluminium Capacitors Series Connection Balancing

30.10.2023
Reading Time: 3 mins read
A A

In the design of a capacitor bank, it is important to balance the capacitors for both DC and transient signal. This paper written by Vishay explains the balancing methods that applies to aluminum electrolytic capacitors.

If two capacitors are placed in series to a DC voltage source U, the midpoint-voltage is not automatically 0.5 x U. The voltage distribution is dominated by the leakage current, which varies by capacitor and is voltage-dependent. The capacitor that has the larger leakage current at 0.5 x U will have a somewhat smaller voltage drop than the other capacitor, leading to an equalized leakage current through both capacitors.

RelatedPosts

Vishay Releases Thick Film Power Resistor With Optional NTC Thermistor

Vishay Releases Automotive Power Resistor with Enhanced Protection Against Short Transient Pulses

Vishay Presents Easy to Grip Control Knobs

Depending on the difference in leakage current, this could lead to voltage drops larger than the rated voltage, which could result in decreased lifetime or even early failure. Balancing the DC voltage is therefore necessary. This can be done in a passive way as shown in Drawing 1: two resistors in parallel to the capacitors, with values typically calculated as Rmax = (2 x Umax. – U)/Ileak– 5min x Umax. would be the maximum allowable voltage drop across one capacitor (typically Urated). U is the applied DC voltage. Ileak-5min is the DC leakage current as measured after five minutes of applied rated voltage.

The disadvantage of this way of passive balancing is a relatively high efficiency loss, typically from 1 % to 5 %. This is unacceptable in applications like solar inverters, where the need for maximum efficiency dominates the market. Here designers work with active balancing.

Practical advice: if one of the capacitors in a series connection fails, replace both capacitors with two fresh ones from the same batch, to ensure that the leakage currents of both devices in one branch are roughly equal.

Two capacitors in series connected to a power source will react differently to transient signals. For the change in voltage drop over a capacitor, C1 holds ∆ V1 = 1/C1 ∫ I1(t)dt. With a fixed current (I=I1 =I2) running through C1 and C2, we get C1 ∆ V1 = C2*∆ V2, or ∆ V1/∆ V2 = C2/C1. So the change in midpoint voltage is determined by the ratio of the capacitances. This leads to simple requirements from designers: C1 = C2. This is correct from a theoretical point of view, but manufacturers of electrolytic capacitors work with a typical production variation of ± 20 % in capacitance in their specifications. This tolerance is set on all produced capacitors; within one batch, variation is less. Typically, the variation within one batch is ± 6 % (total spread from a minimum to maximum capacitance of 12 %).

Practical advice: use capacitors from the same production batch per individual branch. When switching to another production batch, one should measure the 100 Hz capacitance value of all capacitors in that specific branch to exclude unbalanced branches. The same holds for the replacement of capacitors at failure. Remove all capacitors from the branch and replace with fresh ones from the same batch.

Related

Source: Vishay

Recent Posts

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
33

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
38

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
52

Solid State Polymer Multilayer Capacitors For High Temperature Application

2.5.2025
19

Graphene-Based BOSC Bank Of Supercapacitor Cells

2.5.2025
12

Hybrid Energy Storage System for Nanosatellite Applications

1.5.2025
9

COTS-Plus Bulk Tantalum Capacitor for LEO Flight Platforms

29.4.2025
37

High Energy Density Supercapacitors for Space Applications

28.4.2025
34

Layer-By-Layer Printed Film Dielectrics For Energy Efficient Space Systems

28.4.2025
10

Stress Testing Evaluation of Chip Aluminum Polymer Capacitors for Space Applications

27.4.2025
45

Upcoming Events

May 14
11:00 - 12:00 CEST

Reliable RIGID.flex PCBs for Critical Applications – Made in Europe

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Tariffs Crush Sales Sentiment in April 2025 ECST Results

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version