Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Littelfuse Releases TMR Switches with Ultra-Low Power Magnetic Sensing

    Skeleton Opens SuperBattery Factory in Finland 

    Kyocera Releases Ultra-Compact Low Voltage Clock Oscillators

    Murata Expands High Rel NTC Thermistors in Compact 0603M Size

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Wk 45 Electronics Supply Chain Digest

    Transformer Safety IEC 61558 Standard

    ESR of Capacitors, Measurements and Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Characterization of 70GHz Thin Film Chip Resistors

26.4.2025
Reading Time: 5 mins read
A A

This paper on 70GHz high frequency behavior of chip thin film resistors following AEC-Q200 qualification tests was presented by Benjamin Nicolle and Alexandre Moulin, VISHAY Sfernice SA, France during the 5th Space Passive Component Days (SPCD), an International Symposium held from October 15th to 18th, 2024, at ESA/ESTEC in Noordwijk, the Netherlands. Published under permission from ESA SPCD organizers.

Introduction

RelatedPosts

High-Density PCB Assemblies For Space Applications

Solid State Polymer Multilayer Capacitors For High Temperature Application

Graphene-Based BOSC Bank Of Supercapacitor Cells

The evolution of wireless technologies heavily relies on high-frequency circuits, which are crucial for faster data transmission across sectors such as military, aerospace, automotive, and mobile 5G.

Passive components, including resistors, must adapt to these high-frequency demands. This paper, presented at the 5th Space Passive Component Days (SPCD), focuses on measuring S-parameters and deducing impedance values of Vishay’s CHA series thin film chip resistors at frequencies up to 70 GHz.

The goal is to demonstrate the high stability and reliability of these SMD chip resistors, especially under stringent AEC-Q200 tests designed to simulate extreme environmental conditions.

Key Points

  • The CHA series thin film chip resistors are optimized for mmWave, 5G, radar, and high-frequency applications, with impedance stability up to 70 GHz.
  • High-frequency characterization involves precise measurement techniques using S-parameters and impedance modeling.
  • PCB design plays a critical role in minimizing parasitic effects and enhancing resistor performance.
  • Mounting techniques are essential to ensure mechanical stability, especially for very small resistor packages.
  • AEC-Q200 compliant tests confirm the durability and performance consistency of the CHA series under harsh conditions.

Extended Summary

The CHA series resistors, manufactured by Vishay SA, are engineered for high-frequency applications, offering minimal internal reactance and operating effectively up to 70 GHz.

These resistors are available with gold and tin/silver terminations and cover a resistance range of 10 Ω to 500 Ω.

Understanding the behavior of resistors at such frequencies requires analyzing parasitic elements like inductance and capacitance, which are inherent due to construction and mounting.

The paper discusses the use of S-parameters and impedance characterization to simulate high-frequency performance accurately. The resistor, when mounted on a PCB, is modeled using a π-structure to account for parasitic effects. This structure aids in deriving impedance values from transmission admittance conversion after precise calibration.

Electrical Model Equivalent for HF Applications of CH / CHA thin film resistor

Where:
R is the nominal resistance value
L is the inductance linked to the resistor
C is the capacitance linked to the resistor
Lc is the parasitic inductance due to the resistor mounting
Cg is the parasitic capacitance due to the resistor mounting
Zo is the characteristic impedance of the line

High-frequency PCB design is another cornerstone of this study. The authors detail the selection of high-quality, low-loss substrates with stable dielectric properties suitable for frequencies above 40 GHz. Using a conductive-backed coplanar waveguide (CPWG) topology, the design minimizes discontinuities and optimizes impedance matching, crucial for maintaining performance up to 70 GHz. The use of TRL (thru-reflect-line) calibration techniques ensures measurement accuracy by negating the effects of cables, connectors, and other external influences.

Given the miniature size of the CHA 02016 package, assembly precision is critical to prevent issues like excessive tilting. Recommendations include specific stencil thicknesses, solder paste types, and thermal profiles to achieve optimal mounting.

The resistors underwent comprehensive AEC-Q200 tests, including high-temperature exposure, temperature cycling, biased humidity, operational life, mechanical shock, and vibration tests. The results showed exceptional stability, with minimal changes in impedance values before and after the tests. Frequency response measurements confirmed that the CHA series resistors maintained performance consistency even under extreme stress conditions, aligning closely with datasheet specifications.

Conclusion

The study demonstrates that Vishay’s CHA series thin film chip resistors offer outstanding high-frequency performance up to 70 GHz. Their robustness against environmental stresses, verified through rigorous AEC-Q200 tests, makes them reliable components for demanding applications in aerospace, military, automotive, and next-generation wireless technologies. The combination of precise measurement techniques, optimized PCB design, and meticulous assembly processes ensures these resistors deliver consistent, high-quality performance in real-world conditions.

Read the full paper:

CHA AECQ200-spcd5th_ed3Download

Related

Source: ESA SPCD

Recent Posts

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

12.11.2025
4

YAGEO Unveils Compact 2.4 GHz SMD Antenna

6.11.2025
12

KYOCERA AVX Releases Antenna for Iridium Satellite IoT Applications

6.11.2025
14

Capacitor Lead Times: October 2025

6.11.2025
81

Coilcraft Introduces Ultra-Low Loss Shielded Power Inductors

6.11.2025
23

Murata Expands High Cutoff Frequency Chip Common Mode Chokes

5.11.2025
13

Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

31.10.2025
41

Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

30.10.2025
12

Bourns Unveils High-Precision Wirewound Resistor with Long-Term Stability

30.10.2025
27

Upcoming Events

Nov 12
November 12 @ 12:00 - November 13 @ 14:15 EST

Microelectronic Packaging Failure Modes and Analysis

Nov 13
11:00 - 11:30 CET

DC/DC Converters in Automotive Applications

Nov 18
November 18 @ 12:00 - November 20 @ 14:15 EST

Design and Test of Non-Hermetic Microelectronics

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version