Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

    Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

    Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

    TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

    Passive Components for Next Gen Automotive Systems

    ROHM Expands Its High-Accuracy EROM Models for Shunt Resistors

    Samsung Presents Worlds First 100V 22nF Automotive MLCC in 0402 Size

    Circular Connectors Coding

    binder Presents Harsh Environment Connector for Outdoor Environments

    DigiKey Introduces Industry-First Power Supply Configuration Tool

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Compressible Graphene Foam Moderate Heat in Electronics

23.5.2022
Reading Time: 3 mins read
A A

Purdue University engineers have developed a “thermal switch” made up of compressible graphene foam, that dynamically adjusts to temperatures both inside and outside of electronic devices to maintain consistent thermal management.

“As electronic devices get smaller and more powerful, managing heat becomes a more crucial issue,” said Xiulin Ruan, professor of mechanical engineering, who studies nanoscale heat transfer and sustainable energy. “Most devices use passive thermal management, such as conduction and convection, to move excess heat. But this system isn’t tunable or adjustable, and doesn’t help at all in cold conditions.”

RelatedPosts

Bourns Introduces Low-ohmic 2W Thick Film Resistors in Compact Package

Samsung Releases 1uF 25V 0402 MLCC for AI Power Modules 

Bourns Extends High Power Thick Film Resistors with Four New Series

Other researchers have proposed various forms of thermal switches, which turn “on” to move heat away or turn “off” to keep the heat inside. But because these systems are either 100% on or 100% off, they lack the ability to variably adjust to changing temperatures, both inside and outside the device.

The solution came from postdoctoral researcher Tingting Du and master’s students Zixin Xiong and Luis Delgado, co-advised by Ruan and Amy Marconnet, associate professor of mechanical engineering, who studies the thermal properties of lithium ion batteries and other devices. They have developed a continuously tunable thermal switch based on compressible graphene composite foam.

Their work has been published in Nature Communications.

Graphene foam is a commercially available product, built from nanoscopic particles of carbon deposited in a specific pattern, with small voids of air in between. When the foam is uncompressed, it acts as an insulator, with the air pockets keeping the heat in place. But when the foam is physically compressed, the air escapes, and more heat is conducted out through the foam. Depending on how much the foam is compressed, the amount of heat transfer can be precisely dialed in.

Graphene foam; credit: Purdue University

The Purdue researchers measured the thermal conductance of the foam at Purdue’s Birck Nanotechnology Center. They sandwiched a 1.2-millimeter-thick sample of graphene foam in between a heater and heat sink, and placed the system under an infrared microscope to measure the temperature and heat flow. When fully compressing the foam to a thickness of 0.2 millimeters, the thermal conductance went up by a factor of 8. “It functions like a resistor in an electrical circuit,” said Marconnet. “Instead of varying the amount of current flow, it varies the amount of heat it allows to pass.”

They also conducted an experiment in a chamber at Purdue’s Flex Lab that can create specific environmental conditions, and achieved similar results with ambient temperatures from 0° C (32° F) to 30°C (86° F). They placed the graphene foam atop a heat source to simulate an electronic device, and used thermocouples to measure the temperature. “This is important, because the thermal switch adjusts to temperatures both inside and outside the device,” said Ruan. “When the ambient is very hot, our thermal switch can transfer heat out to cool the batteries down, and when the ambient is too cold, our thermal switch can turn off heat transfer to keep the batteries warm.”

While the experiment is just a proof-of-concept, this form of dynamic thermal management has potential applications beyond just cell phones. It could potentially be used in larger electronics, electric car batteries, space vehicles, and even biomedical devices. “Our goal is to use thermal switches to keep all of these devices functioning effectively in varying environments, and improve their overall energy efficiency,” said Ruan.

Related

Source: Purdue University

Recent Posts

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
34

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
52

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
49
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
40

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
23

Researchers Developed Reduced Graphene Oxide (rGO) High Energy Density Graphene Supercapacitors

18.9.2025
44

Researchers Enhanced 2D Ferromagnets Performance

16.9.2025
11

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
22

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
48

Upcoming Events

Dec 2
December 2 @ 12:00 - December 4 @ 14:15 CET

Microwave Packaging Technology

Dec 3
17:00 - 18:00 CET

The Hidden Secret of the Magnetic Transformer and example of its use

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version