Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Direct Coherent Multi-ink Printing of Fabric Supercapacitors

5.2.2021
Reading Time: 3 mins read
A A

Coaxial fiber-shaped supercapacitors with short charge carrier diffusion paths are highly desirable as high-performance energy storage devices for wearable electronics. However, the traditional approaches based on the multistep fabrication processes for constructing the fiber-shaped energy device still encounter persistent restrictions in fabrication procedure, scalability, and mechanical durability. To overcome this critical challenge, a team of scientists based in China, the U.S. and Singapore realized an all-in-one coaxial fiber-shaped asymmetric supercapacitor (FASC) device by a direct coherent multi-ink writing three-dimensional printing technology via designing the internal structure of the coaxial needles and regulating the rheological property and the feed rates of the multi-ink.

Benefitting from the compact coaxial structure, the FASC device delivers a superior areal energy/power density at a high mass loading, and outstanding mechanical stability. As a conceptual exhibition for system integration, the FASC device is integrated with mechanical units and pressure sensor to realize high-performance self-powered mechanical devices and monitoring systems, respectively.

RelatedPosts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

Advanced fibrous energy storage devices with excellent knittability, flexibility and high mechanical stability allow the development of advanced textile-based wearable electronics. For this, Fibre-shaped Asymmetric Supercapacitors (FASCs) have been widely used in wearable electronics, which have high-power density, long cycling stability, good reversibility and energy density features.

Fig. 1 Diagrammatic drawing of the fabrication process of various FASC devices.Schematic diagram of the comparison of the preparation process of the conventional FASC device with (A) parallel, (B) twisted, (C and D) coaxial architectures, and (E) our development of three-dimensional (3D) printing coaxial FASC device via a direct coherent multi-ink writing (DCMW) technology.

However, they are not ideal for electron transfer and ion diffusion because of their larger spacing between two electrodes. Additionally, they have a massive volume structure, posing a serious challenge for the large-scale integration process. Although FASC with shorter charge carrier paths can improve device performance, they suffer from the separation of negative/positive electrodes when a device is bent.

To overcome the above challenges, a team of scientists based in China, the U.S. and Singapore has developed an all-in-one coaxial FASC device with compact internal structures using 3D printing direct ink writing technology. The asymmetric supercapacitors were obtained using different electrode inks/electrolytes since the traditional direct ink writing technology is based on single-ink printing, which can only write one electrode at one time.

Impressively, the device exhibited great flexibility with capacitance retention of 95.5 per cent after 5000 cycles of repetitive bending, which is better than traditional coaxial (87.1 per cent) or twisted (78.2 per cent) asymmetric supercapacitors.

To demonstrate the feasibility of powering electronic devices, a fully charged 3D printed coaxial FASC device in the shape of a dragon was used for illuminating a 1.5-V red LED. Moreover, two 3D printed coaxial FASC devices in series can illuminate a 3.0-V blue LED.

Self-powered systems with energy storage

To obtain a device with high energy density that can drive a mechanical unit, a chip-based FASC device was constructed by realising the 3D printed coaxial FASC device in series. The chip-based FASC devices charged by a solar cell were able to drive an electric motor for continuous rotation.

To test the endurance of a self-powered system, an electric car was actuated with and without the chip-based FASC devices. t resulted in the electric car with solar cell run a short distance because of the lack of external energy supply. In contrast, the electric car with the solar cell and the chip-based FASC devices ran a longer distance, demonstrating enhanced durability for future application in self-powered electric vehicles. Similarly, sightseeing cable cars with a self-powered system demonstrate faster running speed than that with solar cell only.

People usually monitor their health status using sensors, which need to be charged or replaced frequently. Therefore, the self-energy monitoring system can solve the aforementioned problem. To investigate the sensing capability of the pressure sensor, the pressure sensor was attached to the wrist and fingertip of an adult tester and the response signals were detected before and after exercise. The results depicted that both the big and small signals can be monitored, indicating excellent pressure-sensing performance. Thus, an all-in-one coaxial solid-state FASC device with high energy density will become a prospective candidate to be used in more new fields such as artificial intelligence, robotics and sensing.

Related

Source: ScienceMag

Recent Posts

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
10

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
9

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
11

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

27.8.2025
25

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
45

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
19

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
165

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
91

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
37

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
66

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version