Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Four High-Precision, High-Power Foil Resistors

    Key Interconnect Technologies for 2025

    Bishop Reveals Top 10 Connector Manufacturers

    November 2025 Interconnect, Passives and Electromechanical Components Market Insights

    DigiKey Launches 2025 DigiWish Holiday Giveaway for Global Engineering Community

    Samtec Releases Rugged Multi-Port SMPM Interconnects with Threaded Coupling

    Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

    Skeleton Opens €220M Supercapacitor Leipzig Factory

    TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Releases Four High-Precision, High-Power Foil Resistors

    Key Interconnect Technologies for 2025

    Bishop Reveals Top 10 Connector Manufacturers

    November 2025 Interconnect, Passives and Electromechanical Components Market Insights

    DigiKey Launches 2025 DigiWish Holiday Giveaway for Global Engineering Community

    Samtec Releases Rugged Multi-Port SMPM Interconnects with Threaded Coupling

    Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

    Skeleton Opens €220M Supercapacitor Leipzig Factory

    TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Transformer Design Optimization for Power Electronics Applications

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
Reading Time: 4 mins read
A A

The paper “Experimental Evaluation of Wear Failures in SMD Inductors” was presented by Masaaki Tsujii, Murata Manufacturing Co., Ltd., Kyoto, Japan at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as paper No. 6.2.

Introduction

The rapid electrification of the automotive industry and the rise of autonomous driving technologies have significantly increased the operational demands placed on automotive electronic components.

RelatedPosts

Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

Murata Expands High Rel NTC Thermistors in Compact 0603M Size

Murata Christophe Pottier Appointed President of EPCIA

With vehicle lifetimes extending to 10–20 years, ensuring long-term component reliability has become critical. A key approach to this challenge is Mission Profile validation, which defines the environmental and operational conditions components will face throughout their service life.

Surface-mounted device SMD inductors, such as multilayer ferrite beads, are widely used in automotive systems but have been less studied in terms of wear failure mechanisms under realistic Mission Profile conditions. This study investigates the high-temperature, high-current wear failure behavior of multilayer ferrite SMD inductors.

Key Points

  • Mission Profile assessments simulate environmental and operational stresses to predict long-term component reliability.
  • Multilayer ferrite beads with screen-printed Ag internal coils and Ni/Sn external electrodes were tested under high-stress conditions.
  • Experiments involved 10 A DC current at 150 °C, far exceeding the normal rated current.
  • Failures were associated with electromigration, intermetallic compound (IMC) formation, and void generation.
  • DC resistance increased after 200 hours due to IMC growth and voiding, leading toward potential thermal runaway and open failure.

Extended Summary

The study began by acknowledging the growing importance of Mission Profile-based validation in the automotive sector, emphasizing the lack of detailed data on SMD inductor wear failures. To explore these mechanisms, Murata fabricated prototype multilayer ferrite beads featuring two straight internal Ag coil layers and Ni/Sn-plated external electrodes. These inductors were mounted on evaluation boards using Sn-3.0Cu-0.5Ag solder and stressed in a 150 °C chamber with 10 A applied current to accelerate failure mechanisms.

Initial cross-sectional imaging confirmed the baseline structure of the inductors, with uniform Ni plating and intact Ag paste layers. For approximately 200 hours, the DC resistance remained stable, after which it began to rise. SEM and EDX analysis after 600 hours revealed polarity-dependent material migration: on the anode side, Cu and Sn intermetallics formed along the Ni plating, while on the cathode side, Ni plating was partially depleted, and Cu/Ni intermetallics developed in the solder outside the fillet. Voids were observed along the cathode external electrode, coinciding with regions of Ni loss.

The observed behavior was linked to electromigration, whereby electron flow drives Cu and Ni diffusion according to current polarity. Ni migration from the cathode toward the substrate land and Sn diffusion into the Ag paste layer led to the formation of high-resistivity intermetallic compounds. This progression caused the increase in DC resistance over time, and the voids further contributed to resistive growth. If allowed to continue, this process could result in localized heating, thermal runaway, and complete open failure.

The study also highlighted the significant role of Sn crystallographic orientation in Ni diffusion rates, explaining the uneven distribution of IMCs. The combined effects of IMC growth and void formation under accelerated conditions provide critical insight into the failure mechanisms of SMD inductors during long-term service in automotive applications.

Conclusion

This experimental evaluation demonstrated that under high-temperature, high-current stress, multilayer ferrite SMD inductors exhibit wear failures driven by electromigration. Key mechanisms include polarity-dependent diffusion of Cu and Ni, Ni plating depletion, Sn infiltration into the Ag paste layer, and intermetallic compound formation accompanied by voiding. The resulting increase in DC resistance signals the onset of potential thermal runaway and eventual open failure. This research lays the groundwork for developing accurate acceleration models, identifying countermeasures, and designing more robust inductors for the next generation of automotive electronics.

6_2_Murata_Experimental Evaluation of Wear Failures in SMD InductorsDownload

Related

Source: PCNS

Recent Posts

Bourns Releases Four High-Precision, High-Power Foil Resistors

5.12.2025
2

November 2025 Interconnect, Passives and Electromechanical Components Market Insights

4.12.2025
51

Samtec Releases Rugged Multi-Port SMPM Interconnects with Threaded Coupling

3.12.2025
9

Stackpole Expands Anti-Corrosive Anti-Sulfur Thin Film Chip Resistors

3.12.2025
8

TAIYO YUDEN Extends Polymer Hybrid Aluminum Capacitors with Higher Ripple Current and Lower Profile

3.12.2025
25

Würth Elektronik Extends its Safety Film Capacitors

3.12.2025
22

Researchers Present Novel Graphene-Based Material for Supercapacitors

3.12.2025
16

TDK Releases 35A 750J Current Limiters for High-Power Applications

3.12.2025
18

Murata Releases World First 15nF 1.25kV C0G MLCC in 1210 Size

2.12.2025
21

Upcoming Events

Dec 9
December 9 @ 12:00 - December 11 @ 14:15 EST

Space and Military Standards for Hybrids and RF Microwave Modules

Dec 10
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Dec 15
December 15 @ 13:00 - December 18 @ 15:15 EST

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version