Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

    Littelfuse Releases Industry-First SMD Fuse with 1500A Interrupting Rating at 277V

    TDK Unveils Industry Highest Rated Current Multilayer Chip Beads

    Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

    Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

    H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

    Modelithics Releases Components Library v25.0 for Keysight 

    How to design a 60W Flyback Transformer

    Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Comparison Testing of Chip Resistor Technologies Under High Vibration

    EMC Challenges for High Speed Signal Immunity and Low EMI

    MOSFET Gate Drive Resistors Power Losses

    Modified Magnetic Reluctance Equivalent Circuit and its Implications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
Reading Time: 5 mins read
A A

This Knowles Precision Devices blog article discusses features and requirements on high-performance MLCC capacitors for aerospace and defense applications.

From military aircraft to electronic warfare defense systems, aerospace and defense applications are placing new demands on their power electronics.

RelatedPosts

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Capacitors in Pulse Forming Network

Defense electronics systems must function reliably for their lifetime while operating at higher voltages and wider temperature ranges, and all while becoming smaller, lighter, and consuming less power.

These demands are causing a new trend in circuit design. Electrical engineers are now shifting from using conventional silicon-based (Si) semiconductors to wide-bandgap semiconductors built with silicon carbide (SiC) or gallium nitride (GaN).

This is because electronic components built using these materials can switch faster, are more efficient, and have lower size, weight, and power (SWaP) then traditional Si-based options. As this shift is occurring, the “jobs” that need to be done by capacitors used in the power electronics systems of these aerospace and defense applications are changing as well.

Examining the Demanding Jobs Capacitors Must Perform in Aerospace and Defense Power Systems

The main function of any power system is to create and distribute “usable power” for a variety of devices throughout the application. In a military aircraft for example, this involves taking the “dirty” 270V DC energy provided by a large battery and stepping it down, regulating, and sometimes converting it into “clean” AC energy or lesser values of DC energy to be used in other systems throughout the aircraft. This is done using the following systems as shown in Figure 1:

  • Power converters and regulators – Convert high-voltage DC power into low-voltage DC power and control the flow of electrical power throughout the aircraft.
  • Inverters – Convert and regulate DC power into AC power for use in an aircraft’s avionics and weapons systems.
Figure 1. An example of how power flows from the main power source through converters, regulators, and inverters to be converted or regulated for use in other systems throughout the aircraft. Source.

For these systems to function reliably, components, such as capacitors, that provide high-reliability, high-Q, EMI suppression, noise reduction, line filtering, energy storage, decoupling of high-frequency noise, and voltage regulation are needed.

For a variety of functions within the power system, these many requirements are best met by multilayer ceramic capacitors (MLCCs). Let’s look more closely at the many jobs these MLCCs must perform in the power system.

Decoupling & Bypass: As decoupling capacitors, MLCCs help maintain stable power supply voltage in the presence of high-frequency noise and other power-related challenges. These capacitors are typically placed close to the power electronics components they are decoupling to minimize the impact of high-frequency noise and other power-related challenges as well as shunting energy from these signals back to the return path.

Energy Storage: MLCCs can be used as resonant capacitors for energy storage that can provide short, but high, bursts of energy when needed. This can be particularly important for high voltage applications.

Filtering: MLCCs can be used to filter out unwanted noise and other high-frequency signals that can interfere with the operation of power electronics components.

Snubbers: Another form of filtering, MLCCs are used as snubber capacitors to suppress harmful voltage transient spikes and noise that comes from switching very fast.

EMI Suppression: Surface mount and panel mount MLCCs or planar arrays are used as filters in connectors to suppress electromagnetic interference (EMI) generated by the power electronics components, which can increase as target switching frequencies increase. A single array can provide multiple capacitance values.

Voltage Regulation: MLCCs can be used to create voltage regulation circuits to maintain a stable power supply voltage.

High-Reliability Components are a Must

Since the consequences of failure of even the smallest component in an aerospace and defense application can be dire, and many of these applications have long lifespans, all the jobs we just discussed must be performed by high-reliability components. High-reliability components are made from the same high-quality materials as standard components, but high-reliability components are subjected to additional screening and testing to ensure long-term reliability.

The most common methods vendors use for screening components for reliability are based on established military specifications (MIL-SPECS). The following are three of the most frequently used MIL-SPECS for screening today:

  • MIL-PRF-55681 – A general purpose military high-reliability specification
  • MIL-PRF-49467 – Covers requirements for general purpose, ceramic multilayer high voltage capacitors
  • MIL-PRF-123 – Provides an increased level of reliability over MIL-PRF-55681 and is commonly used for space applications

When screening MLCCs using MIL-SPECS, components are powered up from 100 percent to 200 percent of the voltage rating while being brought up to an operating temperature of 125 degrees for 100 or more hours.

All this stringent testing is applied to 100 percent of the MLCCs in the lot to ensure each component coming out of the factory is in pristine condition and is likely to sustain high performance over the application’s lifespan. The components that are weeded out by screening are discarded or sent back for further evaluation.

Related

Source: Knowles

Recent Posts

Dr. Tomas Zednicek Vision for Europe 2025 Passive Electronics Market

14.5.2025
2

Vishay Releases Automotive SMD Thick Film Power Resistor for Enhanced Protection Against Short Transient Pulses

14.5.2025
1

Exxelia Power Film Capacitors Support Critical Systems Across Various Industries

13.5.2025
17

H2-Assisted Thermal Treatment of Electrode Materials Increases Supercapacitors Energy Density

13.5.2025
6

Researchers Present Hybrid Supercapacitor Zn-Ion Microcapacitors

12.5.2025
13

Fischer Releases High Vibration Robust Ratchet Locking USB-C Connector System

9.5.2025
5

KYOCERA AVX Releases Compact High-Directivity Couplers

7.5.2025
23

Supercapacitors Emerge as a Promising Solution to AI-Induced Power Energy Spikes

6.5.2025
81

Murata and NIMS Built New Database of Dielectric Material Properties

5.5.2025
57

Tariffs Crush Sales Sentiment in April 2025 ECST Results

5.5.2025
74

Upcoming Events

May 28
16:00 - 17:00 CEST

Power Over Data Line

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version