Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    May 2025 Interconnect, Passives and Electromechanical Components Market Insights

    HIROSE Releases New Field-Assembly Communication Connectors

    Coilcraft Unveils 165C High-Temperature Coupled Inductors

    Bourns Releases SMD NTC Thermistors for Thermal Sensing

    Wk 22 Electronics Supply Chain Digest

    Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

    Murata Expands its Automotive Common Mode Choke Coils to 150C and High Current Capability

    Bourns Releases New Current Transformer

    Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Coupled Inductors in Multiphase Boost Converters

    VPG Demonstrates Precision Resistor in Cryogenic Conditions

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Exploring the Benefits of High-Performance MLCC Capacitors for Aerospace and Defense

23.3.2023
Reading Time: 5 mins read
A A

This Knowles Precision Devices blog article discusses features and requirements on high-performance MLCC capacitors for aerospace and defense applications.

From military aircraft to electronic warfare defense systems, aerospace and defense applications are placing new demands on their power electronics.

RelatedPosts

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

RF Inductors Key Characteristics and Applications

Stacked Ceramic Capacitors Improve Efficiency in Power and RF Applications

Defense electronics systems must function reliably for their lifetime while operating at higher voltages and wider temperature ranges, and all while becoming smaller, lighter, and consuming less power.

These demands are causing a new trend in circuit design. Electrical engineers are now shifting from using conventional silicon-based (Si) semiconductors to wide-bandgap semiconductors built with silicon carbide (SiC) or gallium nitride (GaN).

This is because electronic components built using these materials can switch faster, are more efficient, and have lower size, weight, and power (SWaP) then traditional Si-based options. As this shift is occurring, the “jobs” that need to be done by capacitors used in the power electronics systems of these aerospace and defense applications are changing as well.

Examining the Demanding Jobs Capacitors Must Perform in Aerospace and Defense Power Systems

The main function of any power system is to create and distribute “usable power” for a variety of devices throughout the application. In a military aircraft for example, this involves taking the “dirty” 270V DC energy provided by a large battery and stepping it down, regulating, and sometimes converting it into “clean” AC energy or lesser values of DC energy to be used in other systems throughout the aircraft. This is done using the following systems as shown in Figure 1:

  • Power converters and regulators – Convert high-voltage DC power into low-voltage DC power and control the flow of electrical power throughout the aircraft.
  • Inverters – Convert and regulate DC power into AC power for use in an aircraft’s avionics and weapons systems.
Figure 1. An example of how power flows from the main power source through converters, regulators, and inverters to be converted or regulated for use in other systems throughout the aircraft. Source.

For these systems to function reliably, components, such as capacitors, that provide high-reliability, high-Q, EMI suppression, noise reduction, line filtering, energy storage, decoupling of high-frequency noise, and voltage regulation are needed.

For a variety of functions within the power system, these many requirements are best met by multilayer ceramic capacitors (MLCCs). Let’s look more closely at the many jobs these MLCCs must perform in the power system.

Decoupling & Bypass: As decoupling capacitors, MLCCs help maintain stable power supply voltage in the presence of high-frequency noise and other power-related challenges. These capacitors are typically placed close to the power electronics components they are decoupling to minimize the impact of high-frequency noise and other power-related challenges as well as shunting energy from these signals back to the return path.

Energy Storage: MLCCs can be used as resonant capacitors for energy storage that can provide short, but high, bursts of energy when needed. This can be particularly important for high voltage applications.

Filtering: MLCCs can be used to filter out unwanted noise and other high-frequency signals that can interfere with the operation of power electronics components.

Snubbers: Another form of filtering, MLCCs are used as snubber capacitors to suppress harmful voltage transient spikes and noise that comes from switching very fast.

EMI Suppression: Surface mount and panel mount MLCCs or planar arrays are used as filters in connectors to suppress electromagnetic interference (EMI) generated by the power electronics components, which can increase as target switching frequencies increase. A single array can provide multiple capacitance values.

Voltage Regulation: MLCCs can be used to create voltage regulation circuits to maintain a stable power supply voltage.

High-Reliability Components are a Must

Since the consequences of failure of even the smallest component in an aerospace and defense application can be dire, and many of these applications have long lifespans, all the jobs we just discussed must be performed by high-reliability components. High-reliability components are made from the same high-quality materials as standard components, but high-reliability components are subjected to additional screening and testing to ensure long-term reliability.

The most common methods vendors use for screening components for reliability are based on established military specifications (MIL-SPECS). The following are three of the most frequently used MIL-SPECS for screening today:

  • MIL-PRF-55681 – A general purpose military high-reliability specification
  • MIL-PRF-49467 – Covers requirements for general purpose, ceramic multilayer high voltage capacitors
  • MIL-PRF-123 – Provides an increased level of reliability over MIL-PRF-55681 and is commonly used for space applications

When screening MLCCs using MIL-SPECS, components are powered up from 100 percent to 200 percent of the voltage rating while being brought up to an operating temperature of 125 degrees for 100 or more hours.

All this stringent testing is applied to 100 percent of the MLCCs in the lot to ensure each component coming out of the factory is in pristine condition and is likely to sustain high performance over the application’s lifespan. The components that are weeded out by screening are discarded or sent back for further evaluation.

Related

Source: Knowles

Recent Posts

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
26

Skeleton Releases GrapheneGPU to Reduce AI Energy Consumption by 44% and Boosts Power by 40%

29.5.2025
38

VINATech Expands Aluminum Capacitor Portfolio with Acquisition of Enesol

28.5.2025
66

Supercapacitors Benefits in Industrial Valve Fail-Safe Control Systems

26.5.2025
31

Samsung Electro-Mechanics Releases High-Capacitance MLCCs for AI Server Applications

21.5.2025
62

Capacitor Ripple Current Testing: A Design Consideration

21.5.2025
75

Coilcraft Extends Air Core RF Inductors

20.5.2025
19

Developing Low Inductance Film Capacitor using Bode 100 Analyzer

15.5.2025
58

Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

15.5.2025
33

YAGEO Extends Rectangular Aluminum Electrolytic Capacitor Family

15.5.2025
80

Upcoming Events

Jun 4
11:00 - 12:00 CEST

Würth Elektronik PCB Production in Asia

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What Electronics Engineer Needs to Know About Passive Low Pass Filters

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Coefficient of Linear Thermal Expansion on Polymers Explained

    0 shares
    Share 0 Tweet 0
  • Knowles Introduces High-Frequency RF Crossover

    0 shares
    Share 0 Tweet 0
  • What is the Difference Between X8G, X8L and X8R Ceramic Capacitor Dielectrics?

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version