Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Samsung Delivers Silicon Capacitors to Marwell AI Systems

    Stackpole Releases Low VCR High Voltage Chip Resistors

    June 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Wk 25 Electronics Supply Chain Digest

    Smolteks CNF MIM Capacitor Break 1 µF/mm²

    Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

    Murata Announces 0402 Automotive Chip Ferrite Beads for V2X

    2025 Thick and Thin Film Resistor Networks Environment Overview

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Fast Electrochromic Supercapacitors Change Color According to their Stored Energy Level

11.1.2021
Reading Time: 4 mins read
A A

During materials engineering, a network of tiny holes or pores can improve the energy storage capacity of materials for applications as smart windows. Electrochromic devices (ECDs), which control light transmittance through electrochemical redox reactions, have been widely used in electrochemical reflective displays or smart windows for energy efficient buildings. Recently, the functionality of ECDs has been extended to include energy storage, which is referred to as electrochromic supercapacitors (ECSs). ECSs have been increasingly studied as next-generation electrochemical components that can not only change their own optical properties but also store the energy supplied for coloration. In particular, their optical characteristics, such as color intensity, directly reflect the real-time levels of energy stored in these devices.

Smart windows are platforms whose light transmission properties can be altered when light, voltage or heat is applied. Scientists can control the fraction of light passing through the material using an electrical voltage to electrically switch from transparent to opaque materials during charge transfer. While this feature is associated with storage and release of energy, the same materials can be used for energy storage as well. In a new report, Jeon-Woo Kim and a team of scientists at the Pohang University of Science and Technology in South Korea developed and improved electrochromic supercapacitors made from tungsten trioxide (WO3). They used an evaporation-induced self-assembly process to deposit a film of tungsten trioxide with pores, where the porous architecture increased the speed of switching and capacitance in the material compared to conventional tungsten trioxide thin films. The work is now published on Nature Asia Materials.

RelatedPosts

Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

Samsung Delivers Silicon Capacitors to Marwell AI Systems

Stackpole Releases Low VCR High Voltage Chip Resistors

During this work, Kim et al. demonstrated the ultrafast response of electrochromic supercapacitors by exploring the mesoporous structure of the constituent materials. Electrochromic devices (ECDs) can generate reversible color changes that correspond to electricity with promising applications across smart windows, displays and military camouflage. The devices can also control light transmittance to build materials for climate adaptive energy-efficient buildings. The functionality of ECDs can be extended to energy storage devices known as electrochromic supercapacitors (ECS). Such supercapacitors are increasingly under investigation as next-generation electrochemical components capable of changing their own optical properties and storing the energy supplied. Their inherent optical characteristics can therefore directly reveal the real-time energy levels stored within. Researchers had developed such high-performance devices using electrochromic chromophores based on transition metal oxides such as tungsten trioxide due to their superior electrochemical properties. The electrochromic displays developed here can change color based on their stored levels of energy and the product will have broad implications as next-generation smart window materials for buildings and portable energy storage.

a GCD curves of the meso-WO3 ECS at various current densities. b Dependence of the capacitance retention of the compact- and meso-WO3 ECSs on the charging/discharging current densities. c Charging/discharging cycling stability of the ECSs at a current density of 1.0mA/cm2. d GCD curve at 1.0mA/cm2 and the corresponding in situ transmittance profile at 700nm for the meso-WO3 ECS. e Photographs of the meso-WO3 ECS during the charging and discharging process. f Schematic illustration of the ion intercalation in meso- (left) and compact-WO3 (right).

Printing and evaporation-induced self-assembly

The team combined printing and evaporation-induced self-assembly to develop the highly functional, energy-storing, electrochromic supercapacitor displays. This printing process produced a micellar structure through the nozzle after evaporation, which they then subjected to sequential calcination and oxygen plasma treatment to form a patterned mesoporous WO3 device for energy-storing applications. When they charged the device, the patterns turned dark blue to indicate the charged state. To prove its mechanism of action, the team connected the device to a white-light emitting diode (LED) that initially emitted light, when the stored energy was consumed, the device returned to its original transparent state.

Outlook: next-generation smart electronics.

In this way, Jeon-Woo Kim and colleagues developed multifunctional electrochromic supercapacitors based on amorphous mesoporous WO3 films. Compared to the compact version of electrochromic supercapacitors (compact-WO3-ECS), the mesoporous electrochromic supercapacitors (meso-WO3-ECS) showed superior performance. The scientists credited this to its large surface area and amorphous nature. The mesoporous devices functioned rapidly to serve as electrochemical reflective displays and to store electrical charge. This setup can also power other electronic devices, as the color intensity of the pattern on the device indicated the level of stored energy within. The outcomes will have tremendous potential to form next-generation smart electronics.

More information: Keon-Woo Kim et al. Extremely fast electrochromic supercapacitors based on mesoporous WO3 prepared by an evaporation-induced self-assembly, NPG Asia Materials (2020). DOI: 10.1038/s41427-020-00257-w

Related

Source: Phys.org

Recent Posts

Samsung Delivers Silicon Capacitors to Marwell AI Systems

24.6.2025
3

Smolteks CNF MIM Capacitor Break 1 µF/mm²

19.6.2025
32

Samsung Electro-Mechanics Releases 0201 X7T 1uF 6.3V MLCC for ADAS Applications

19.6.2025
12

Advanced Conversion Announces Mass Production of 200C Film Capacitors

18.6.2025
21

VinaTech Supercapacitors: Enhancing Smart Meter Reliability and Efficiency

17.6.2025
20

Chinas MLCC Makers Reach 10% Market Share

16.6.2025
81

Smoltek CNF-MIM Capacitor Commercialization Update

11.6.2025
33

Understanding Switched Capacitor Converters

9.6.2025
80

Exxelia to Present Smart Integrated Magnetics and MML Film Capacitors at SIAE25 

6.6.2025
36

Knowles Extends Range and Performance of C0G MLCC Capacitors

6.6.2025
28

Upcoming Events

Jun 24
17:00 - 18:00 CEST

Ultra-Compact and Efficient Switched-Capacitor Power Converters

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version