Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Reliability of E-Textile Conductive Paths and Passive Component Interfaces

    Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Design of High Precision Integrated Resistive Voltage Dividers

    Textile-Based Antennas

    Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

    Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

    Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

    Life Cycle Assessment of a Graphene-Based Supercapacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
Reading Time: 4 mins read
A A

The paper “Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors” was presented by Gordon Smith, Global Advanced Metals, Boyertown, Pennsylvania, US at the 5th PCNS Passive Components Networking Symposium 9-12th September 2025, Seville, Spain as paper No. 4.1.

Introduction

Tantalum-based capacitors are critical components for electronic devices requiring reliability under diverse environmental conditions.

RelatedPosts

Reliability of E-Textile Conductive Paths and Passive Component Interfaces

Design of High Precision Integrated Resistive Voltage Dividers

Textile-Based Antennas

Their ability to maintain stable capacitance across varying temperatures and voltages, combined with long lifetime, high volumetric efficiency, and absence of piezoelectric effects, make them vital in demanding applications such as servers, automotive systems, and space technologies.

To achieve high performance, the selection of the appropriate tantalum powder for the capacitor anode is essential. This article explores the characteristics, production, and benefits of flaked tantalum powders in comparison with traditional nodular powders, demonstrating their suitability for high-capacitance and high-reliability applications.

Key Points

  • Tantalum capacitors rely on high surface area tantalum pentoxide dielectrics for capacitance.
  • Particle size and morphology of tantalum powders directly influence volumetric efficiency, capacitance, and reliability.
  • Flaked powders, with plate-like geometries, provide higher specific charge and reduced leakage current, particularly at higher formation voltages.
  • Manufacturing processes for flake powders include mechanical deformation of nodular or angular powders followed by heat treatment and purification.
  • Flake powders improve volumetric efficiency and electrical reliability compared to nodular powders, especially in high-voltage applications.

Extended Summary

Modern tantalum capacitors trace their origins to the 1950s and maintain a basic construction composed of a tantalum anode, a tantalum pentoxide dielectric, and a cathode layer of MnO₂ or conductive polymer. The manufacturing process involves pressing high-purity tantalum powder with a binder around a tantalum wire, removing the binder, sintering the pellet at high temperatures to create a porous yet mechanically strong structure, and anodizing it to form a tantalum pentoxide dielectric. The capacitor is completed with a cathode layer and conductive carbon and silver coatings. The dielectric layer’s thickness, controlled by formation voltage, is critical to the capacitor’s ultimate electrical performance.

Tantalum powder morphology has evolved from early angular powders to nodular and dendritic forms to optimize surface area and capacitance. Angular powders, with irregular shapes, suffered from inefficiency and high leakage due to sharp edges and broad particle size distributions. Nodular powders offered improved control over particle and pore sizes, enhancing capacitance and reliability across a wide formation voltage range. Dendritic powders, with nanoscale primary particles, are used for very low-voltage, high-capacitance applications. Flaked powders, produced by mechanically deforming angular or nodular powders into thin platelets, combine the benefits of nodular powders with the unique advantages of high-aspect-ratio geometries.

The production of tantalum powders involves hydrometallurgical extraction, chemical purification, and sodium reduction of K₂TaF₇ to form a basic powder. Flake powders are created by mechanically milling nodular or angular powders using media mills such as ball or rod mills, which flatten the ductile tantalum into platelets. Further treatments, including heat, deoxidation, nitriding, and acid washing, refine the powders to meet strict electrical and physical specifications.

Flake powders demonstrate superior volumetric efficiency because their platelet structure increases the exposed surface area per unit volume, thereby raising the achievable capacitance. Experiments comparing flake powders C275 and C255 with nodular powder C350 show that specific charge capacity depends on formation voltage, with C275 excelling below 200 Vf and C255 outperforming at higher voltages due to better structural integrity at thick dielectric layers. Theoretical models confirm that flake geometries can achieve higher maximum charge capacities than nodular counterparts due to their favorable surface-to-volume ratios.

In terms of electrical reliability, flake powders reduce leakage currents because their lower curvature surfaces induce less mechanical stress during dielectric growth. This minimizes defect formation in the tantalum pentoxide layer, which is crucial for long-term stability. Comparative tests reveal that flake powders exhibit significantly lower leakage currents than nodular powders, and the performance gap widens at higher formation voltages. C255, in particular, provides excellent leakage current characteristics, making it preferable for applications prioritizing reliability over peak capacitance.

Conclusion

Flaked tantalum powders present a compelling solution for high-capacitance, high-reliability capacitor applications. Their platelet morphology enhances volumetric efficiency and reduces leakage current, offering clear advantages over traditional nodular powders, especially in high-voltage environments. With established manufacturing processes and compatibility with both MnO₂ and polymer capacitor technologies, flake powders allow capacitor manufacturers to optimize product performance for demanding applications in automotive, aerospace, and advanced electronics.

4_1_GAM_Flaked Tantalum Powders High Capacitance Powders for High Reliable Tantalum CapacitorsDownload

Related

Source: PCNS

Recent Posts

Design of High Precision Integrated Resistive Voltage Dividers

29.9.2025
3

Space Evaluation Testing on SAW Filter Based on Piezo-On-Insulator Technology

29.9.2025
7

Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

29.9.2025
3

Beyond 85/85 Lifetime Estimation of PP Film Capacitors in Humid Environments

26.9.2025
17

Life Cycle Assessment of a Graphene-Based Supercapacitor

26.9.2025
7

Pure-Polyimide Flexible Heater for High-Reliability Applications

26.9.2025
10

Samsung Electro-Mechanics Unveils Ultra-High-Capacitance MLCCs for AI Servers

26.9.2025
11

Advancements in Flexible End Terminations for Robust MLCCs in EV

26.9.2025
15

Lifetime Assessment for Capacitors in EPS Application

25.9.2025
30

Passive Components J-STD-075 Process Sensitivity Level Classification And Labeling

25.9.2025
21

Upcoming Events

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version