Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Hybrid Electrochemical Electrolytic Capacitor Provides High Frequency and High Capacitance Performance

25.4.2025
Reading Time: 4 mins read
A A

This article published in Nature Communications Journal discusses advancements in high-frequency capacitors development by combining EDLC supercapacitors with electrolytic capacitors, addressing the limitations imposed by slow ion dynamics in traditional electrochemical supercapacitors.

Researchers developed a Hybrid Electrochemical Electrolytic Capacitor (HEEC) that combines electrochemical and dielectric effects to achieve both high capacitance and broad frequency range performance.

RelatedPosts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

Paumanok Releases Capacitor Foils Market Report 2025-2030

The design features a thin dielectric layer and perfect conducting electrodes with mesopores, enabling high characteristic frequency and stable volume capacitance density.

Key points:

  • Challenge: Traditional electrochemical supercapacitors suffer from poor frequency response due to the electrical double layer effect, limiting their characteristic frequency.
  • Innovation: The HEEC design integrates monolayer graphene as a working electrode and introduces a hybrid approach to enhance both capacitance and frequency response.
  • Results: The device achieved a characteristic frequency of 44 kHz with a volume capacitance density of 800 µF/cm³, outperforming conventional electrolytic capacitors in miniaturized electronic systems.
  • Applications: The HEEC was successfully integrated into microsystem power management, demonstrating significant size reduction while maintaining performance comparable to commercial capacitors.

The HEEC design combines the advantages of both electrochemical and dielectric effects, providing high capacitance density at low frequencies and extending the frequency range to surpass 10 kHz. A planar micro HEEC with a characteristic frequency of 44 kHz and a stable volume capacitance density of 800 μF/cm3 was fabricated using a selective atomic layer deposition technique.

Hybrid Electrochemical Electrolytic Capacitors (HEECs) combine the high-frequency performance of electrolytic capacitors with the high capacitance of supercapacitors. The design features interdigital electrodes with different widths to balance capacitance density and a parallel circuit layout to enhance frequency response. The HEECs are fabricated using standard semiconductor processes, including lithography, PVD, ALD, and metal lift-off, and demonstrate improved performance compared to traditional hybrid capacitors.

A hybrid electrochemical energy capacitor (HEEC) is fabricated using a CMOS-compatible process, enabling wafer-level production and circuit integration. The HEEC exhibits a porous Au cathode and an Al2O3 dielectric layer on the anode, resulting in a high characteristic frequency exceeding 1 MHz and a capacitance density of 600 μF/cm3 at low frequencies. This performance surpasses commercial electrolytic, ceramic, tantalum, and film capacitors, making it suitable for high-frequency applications.

Parallel-connected HEECs (p-HEECs) are designed to improve high-frequency performance by doubling capacitance density and reducing ESR. Simulation and experimental results show a near-ideal fit, with p-HEECs exhibiting a higher characteristic frequency and lower dissipation factor compared to s-HEECs and commercial capacitors. p-HEECs demonstrate superior high-frequency capacitive behavior, outperforming commercial supercapacitors and bridging the gap between supercapacitors and aluminum capacitors (AEC) in terms of frequency response and capacitance density.

A Hybrid Electrochemical Electrolytic Capacitor (HEEC) design is presented, combining electrolytic and electrochemical capacitors to achieve a 44 kHz characteristic frequency and 800 μF/cm3 volume capacitance density. The HEEC is integrated into a compact power module and a buck circuit, demonstrating its practical utility in power management applications. The HEEC’s potential to revolutionize high-frequency power management for portable electronics is evident.

HEECs are fabricated using wafer-level CMOS-compatible processes, ensuring mass production and chip integration. The fabrication involves depositing electrodes, etching, and applying a gel electrolyte. The capacitance density and dissipation factor of HEECs are calculated based on impedance spectroscopy data, and equivalent circuit simulations are performed using ZView software.

AECs and Conventional SCs are directly purchased from different manufacturers. AECs are tested with the same equipment as HEECs under the same circumstances. The data availability and references are provided.

High-frequency supercapacitors surpassing the dynamic limit of electrical double layer effects are demonstrated. The supercapacitors, based on a hybrid structure of carbon nano-onion and graphene, exhibit ultrahigh-rate performance and are suitable for compact alternating current filtering. The research highlights the potential of these supercapacitors for advanced energy storage applications.

Discussion

This research initiates a great span bridge between commercial electrolytic and electrochemical capacitors, which meets requirements for micro capacitors operating at over kilohertz frequencies, filling the blank of this frequency region in the Ragone Plot. The Hybrid Electrochemical Electrolytic Capacitor (HEEC) design successfully overcomes the frequency limitations of micro capacitors, achieving an impressive 44 kHz characteristic frequency with 800 μF/cm3

volume capacitance density by hybrid incorporation of electrolytic and electrochemical capacitors at the circuit level. By integrating the HEEC into a compact power module and replacing the commercial AEC in the buck circuit, we demonstrate its practical utility in power management applications. The HEEC’s potential to revolutionize high-frequency power management for portable and integratable electronics is evident, offering a promising pathway for more efficient and compact microelectronic devices.

This breakthrough in capacitor design holds potential for future miniaturized electronics, enabling more efficient power solutions for wearable and portable devices.

Read the full original paper:

Li, Z., Xu, M., Xia, Y. et al. High-frequency supercapacitors surpassing dynamic limit of electrical double layer effects. Nat Commun 16, 3704 (2025). https://doi.org/10.1038/s41467-025-59015-7

Related

Source: Nature Communications Journal

Recent Posts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
1

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
8

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
2

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Connector PCB Design Challenges

3.10.2025
19

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
39

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
36

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version