Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Samtec Expands Connector Severe Environment Testing Offering

    Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

    YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

    Enhancing Energy Density in Nanocomposite Dielectric Capacitors

    Advances in the Environmental Performance of Polymer Capacitors

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

IIT Hyderabad Researchers Use Corn Husk to Produce Carbon Electrode for Supercapacitors

30.7.2020
Reading Time: 3 mins read
A A

Hyderabad: Indian Institute of Technology Hyderabad Researchers have developed a simple and cost-effective method to derive ‘activated carbon electrode’ material from cornhusk for high-voltage supercapacitors. Their electrode showed better electrochemical performance (High energy density and high-power density) when compared with conventional supercapacitors.

This development is important for India, especially for States such as Uttar Pradesh and the combined Andhra Pradesh-Telangana States, which are the first and second largest producers of corn in the country respectively. They produce a large amount of cornhusk waste, much of which waste is currently burnt as its potential to be converted to valuable electrode material is not harnessed owing to lack of awareness, expertise and technology.

RelatedPosts

Samtec Expands Connector Severe Environment Testing Offering

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

YAGEO Releases Compact Coupled Inductors for High-Density VR Designs

This Research by IIT Hyderabad on affordable and efficient methods can enable this conversion, which would trigger the cascade of additional earning opportunity for the corn-farmer and provision of a sustainable energy source.

The research was led by Dr. Atul Suresh Deshpande, Associate Professor, Department of Materials Science and Metallurgical Engineering, IIT Hyderabad, in collaboration with Dr. T. N. Rao, Associate Director, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, along with their Research students, M. Usha Rani, and K. Nanaji (Project Scientist). Their Research paper detailing the synthesis procedure and the electrochemical performance of the material produced has been recently published in the reputed peer-reviewed Journal of Power Sources.

In the global sector, rapid advancements in adopting new technology and fast evolving green energy systems are trending in the supercapacitor’s market. It is projected to share USD 720 million by 2025 market value, which is expected to grow at a CAGR of 12 per cent from 2020 to 2025.

Carbon based electrodes are playing a crucial role in the development of energy storage devices. Carbon based electrodes are typically derived from expensive, high purity precursors such as polymers, organic precursors, high purity gases using various methods. The production of carbon electrodes from biomass is a simpler straightforward process.

In collaboration with ARCI (Hyderabad), the IIT Hyderabad team has developed activated carbon electrode using simple materials – Corn husk and KOH.

Explaining his research, Dr. Atul Suresh Deshpande, Associate Professor, Department of Materials Science and Metallurgical Engineering, IIT Hyderabad, said, “Activated carbon electrode material with porous sheet-like morphology has been prepared using corn husk through carbonization followed by KOH activation. Due to the low-cost precursors and simple processing method, this process of producing activated carbon can be easily adapted for large-scale commercial production.”

To obtain the high surface area activated carbon with porous sheet-like morphology from corn husk, the researchers added KOH as an activating agent. KOH helps in the formation of sheet-like morphology. The synergy of morphology and high specific surface area (1378 m2 g-1) improve the storage capacity of the activated carbon electrode material.

The storage capability of activated carbon sample tested by using high-operating voltage electrolyte (1M tetraethylammonium tetrafluoroborate (TEABF4) in acetonitrile (AN)). This electrode showed better electrochemical performance (High energy density (20 Wh kg-1) and high-power density (681 W kg-1) at 1 A g-1) than electrodes in conventional supercapacitors.

Explaining further, Dr. T. N. Rao, Associate Director, International Advanced Research Centre for Powder Metallurgy and New Materials (ARCI), Hyderabad, added, “Activated carbon derived from natural sources is very promising electrode material for supercapacitors, and the well-known Maxwell company uses coconut derived activated carbon in their supercapacitors. The key scientific challenge in this research is pore size engineering of activated carbon with high surface area and suitable pore size that allows the electrolyte ions to adsorb into pores to maximum extent which in turn give high capacity. The group at IITH in collaboration with ARCI has succeeded in converting corn husk into high performing activated carbon for supercapacitor application. Corn husk being widely produced waste, it is also scalable from technology point as well.”

Related

Source: India Education Diary

Recent Posts

Silicon Capacitors Market: Shaping the Foundation for Next-Gen Miniaturization Electronics

10.10.2025
6

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
14

Advances in the Environmental Performance of Polymer Capacitors

8.10.2025
31

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
15

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
16

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
3

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
23

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
31

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
44

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version