Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

    VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

    SCHURTER Releases High Performance EV-Fuse

    Panasonic Industry to Double Production of MEGTRON PCB Materials

    5th PCNS Awards Outstanding Passive Component Papers

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Introduction of Press-Fit Assembly on Aluminum Electrolytic Capacitors

29.4.2020
Reading Time: 4 mins read
A A

Can Press-Fit capacitors still deliver the necessary robustness and electrical connection? Read quick overview by Wilmer Companioni, Kemet Technical Marketing Team Leader.

It’s a simple concept, just press the pins into the holes and voila, you’ve installed your capacitor. One the face of it, it doesn’t sound like it is a very solid assembly, but we put a lot of thought into how we can bring the reliability you’re used to with our aluminum electrolytic Press-Fit capacitors. We’ll get into how this very simple method of assembly can still deliver the necessary robustness and electrical connection.

RelatedPosts

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

SCHURTER Releases High Performance EV-Fuse

What is Press-Fit?

There are many ways to mount components onto a board. The two most popular processes are surface mount technology and through-hole technology. Both of those processes use solder to mechanically affix components to the board.

One mounting technology type that has become increasingly popular is Press-Fit. This consists of “pins” that are capable of exerting lateral force on the holes in which they are inserted. Press-Fit has been successfully used in many electronics, such as IGBT modules for some time. KEMET is among the first to apply a Press-Fit connection to capacitors.

So, is it better than solder?

The question here is one that attempts to compare the mechanical robustness of solder-in connections with a press-fit connection. To take full advantage of a press-fit connection it requires a laying down additional copper tracking around the connections and full plated through hole.

The real question here is, “Is a press-fit connection as mechanically sound as a solder-in connection?” A bit of a loaded question if you ask me as the failure mode of a Press-Fit connection is slightly different than that of a solder-down connection.

Many times, large electrolytic capacitors are mechanically clamped to the casing because either solder-in or press-fit, such large components can create large amounts of torque on the board. Ultimately when equivalently affixed, solder-in connections and press-fit connections exhibit similar performance. The following is an example of a comparison of vibration performance.

An Option for Serviceability

Perhaps the biggest advantage of Press-Fit connections is that they can be more easily serviced. Our aluminum electrolytic capacitors are designed for long service life. Even so, sometimes these need to be serviced.

Using solder-in methods replacing a component can be a challenge. The equipment in which these components live are usually ones that must be continuously operational or there can be fines for down-time, such as power distribution systems. The less time the system is down the better. Replacing solder-in components may sometimes take hours but the replacement of press-fit items is more on the order of minutes.

Is Press-Fit Right for Me?

As with any good question, that depends. Press-Fit offers a favorable mix of serviceability with reliability. And that is the message of Press-Fit, being able to deliver a robust mechanical and electrical connection without sacrificing the necessary mechanical reliability of a system.

The only real way to know is to try out Press-Fit for yourself. While not a drop-in replacement for through-hole or snap-in connections, you can find you necessary combination of capacitance, voltage, and size. Check out Kemet offering of Press-Fit capacitors here.

Related

Recent Posts

Würth Elektronik Announces 2025 Digital WE Days Virtual Conference

15.9.2025
1

VINATech Unveils Hybrid Energy Storage System to Revolutionize Grid Stability and Power Delivery

15.9.2025
4

5th PCNS Awards Outstanding Passive Component Papers

14.9.2025
12

TDK Releases Ultra-small PFC Capacitors

10.9.2025
26

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
24

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
16

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
30

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
31
source: Samtec

Best Practices for Cable Management in High-Speed and High-Density Systems

4.9.2025
16

Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

3.9.2025
31

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version