Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

    Vishay Expanded Inductor Portfolio With More Than 2000 Stock Items 

    Paumanok Releases Capacitor Foils Market Report 2025-2030

    Modelithics Welcomes CapV as a Sponsoring MVP

    Wk 40 Electronics Supply Chain Digest

    Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

    Electrolyte Selection and Performance in Supercapacitors

    Connector PCB Design Challenges

    Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Extends Capacitance Range of Hermetically Sealed Leaded Polymer Tantalum Capacitors with Larger Case Size 

9.6.2022
Reading Time: 6 mins read
A A

KEMET is now introducing a new case size (C case) inside the T550 Series, axial leaded polymer hermetically sealed (PHS) tantalum capacitors, offering higher capacitance availability for different voltages rails.

In a continuous effort to extend the technology offering to the defense and aerospace community, the new C case size offer a new capacitance of 300µF rated at 50V as an exciting solution for power rails up to 40V in an operating temperature below 85°C.

RelatedPosts

Tantalum Capacitor History

Understanding the Influence of ESR and Ripple Current for the Capacitor Selection

Resonant MLCC OBC Application Guide

The T550 (105°C) and T551 (125°C) axial leaded polymer hermetically sealed (PHS) devices are tantalum capacitors with a Ta anode and Ta2O5 dielectric. A conductive organic polymer replaces the traditionally used MnO2 or wet electrolyte as the cathode plate of the capacitor.

The conductive organic polymer has very low ESR and improved capacitance retention at high frequency and low temperature. The PHS device also exhibits a benign failure mode, which eliminates the catastrophic spill of the acidic electrolyte during a case breach in Wet Tantalum capacitors. Additionally, this part may be operated at voltages up to 80% of rated voltage, with equivalent or better reliability than traditional MnO2 or Wet Tantalum capacitors operated at 50% of rated voltage.

Polymer Hermetic Sealed Versus Wet Tantalum

Today, there is a clear trade-off when designers still consider the usage of Wet Tantalum capacitors that were so widely used in power supply lines. In the past, Wet technology could offer a considerable increase in the performance of the existing capacitance solutions (increased capacitance and lower ESR).

T550 PHS Benefits

  • Includes F-Tech anode which eliminates hidden defects in the dielectric
  • 100% simulated breakdown screening
  • Maximum operating temperature of +105°C
  • DLA drawing 13030 qualified parts available
  • Polymer cathode technology
  • Extremely low ESR
  • High frequency and low temperature capacitance retention
  • 100% constant voltage conditioning (240 hours)
  • 100% surge current tested
  • Volumetrically efficient
  • Non-ignition failure mode
  • Approximately 25% lighter than equivalent wet tantalum
  • T555 surface mount design option (right image)

However, it is known that larger capacitance values typically have a greater risk of failure (a larger dielectric surface area is more likely to present structural defects). It is also often seen as increased sensitivity to mechanical stresses (shock and vibration) and reverse voltage conditions. Failures are often related to the internal gas pressure generated due to the electrolysis of the electrolyte caused by excessive DCL leakage currents in forward or reverse directions.

There are additional reasons why Wet technology is being replaced by tantalum capacitors based on solid cathode technology, particularly the tantalum polymer capacitors. One of the major impacts of a temperature increase in a tantalum capacitor is the increase of leakage current. Although this will not necessarily result in a capacitor failure, it can cause circuit failure if DCL moves outside the required tolerance. As leakage current increases, it can speed up runaway effects leading to a dielectric breakdown. At low temperatures, the electrolyte used in devices will start freezing. As a result of that change, the capacitance will drop and, in a limited situation, result in an open circuit.

It is also known that applications continuously increase the level of switching frequency (mostly DC/DC converters). Again, that fact significantly impacts the capacitance roll-off for Wet Tantalums. In the next plots, experimental measurements of capacitance over frequency of two capacitors (PHS and Wet Tantalum), both 82µF 75V, at two different temperatures make clear the significant impact of temperature and frequency in Wet Tantalums when compared with the new solid cathode technology used in KEMET PHS T550 and T551 series.

At 100kHz, the PHS T550 capacitor sees the capacitance dropping from 49µF at 25°C to 43.4µF when submitted to -55°C. The Wet Tantalum shows a drop to 2.2µF at 100kHz and -55°C.

PHS vs Wet tantalum capacitors capacitance at 25°C over frequency up to 500kHz.
PHS vs Wet tantalum capacitors capacitance at -55°C over frequency up to 500kHz.

New C Case Size Catalog Extension

KEMET extends the product offering with a new case size inside the T550 series. With different reliability levels (B and C) and surge current options available, it is now possible to order a more volumetric efficient case size, with a 300µF, 50V available in a C case. 

KEMET Tantalum Polymer Capacitors Hermetically Sealed (T550 Series) offer a voltage derating recommendation of 80% for applications up to 85°C. The new C case recently added to the PHS portfolio will offer 300µF to be used in a 40V rail. Also, the application will benefit from the advantages of a solid cathode capacitor where the roll-off with frequency and capacitance variation with temperature will offer additional stability and higher levels of energy.

Voltage Derating and Power Rails: Polymer versus Wet and MnO2 tantalum capacitor technology; source: KEMET

Construction

KEMET High-Reliability PHS series presents two different discrete configurations, through-hole, and SMD. Details of the mechanical construction are presented below:

KEMET PHS hermetically sealed leaded tantalum polymer capacitor T550 construction
KEMET PHS hermetically sealed leaded tantalum polymer capacitor T555 construction

Related

Source: KEMET

Recent Posts

Vishay Releases DLA Tantalum Polymer Capacitors for Military and Aerospace

8.10.2025
1

Paumanok Releases Capacitor Foils Market Report 2025-2030

7.10.2025
8

Modelithics Welcomes CapV as a Sponsoring MVP

7.10.2025
2

Benefits of Tantalum Powder Stress–Strain Curve Evaluation vs Conventional Wet Test

3.10.2025
20

Electrolyte Selection and Performance in Supercapacitors

3.10.2025
16

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
24

Stackpole Offers High Voltage Plate Resistors up to 40KV

2.10.2025
18

How to Manage Supercapacitors Leakage Current and Self Discharge 

1.10.2025
39

Qualification of Commercial Supercapacitors for Space Applications

1.10.2025
38

Experimental Evaluation of Wear Failures in SMD Inductors

1.10.2025
36

Upcoming Events

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version