Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KEMET Introduces Next-Generation Miniature Supercapacitors for Automotive

1.9.2021
Reading Time: 2 mins read
A A

KEMET, part of the YAGEO Group and leading global electronic components supplier, announces its new high-performance supercapacitors for automotive electronics, the FMD and FU0H series.

These series deliver 1,000 hours at 85°C/85% RH-rated voltage and operational temperature ranging from -40°C to 85°C. The FMD series offers the highest lifetime with up to 4,000 hours. These supercapacitors are qualified to an automotive testing protocol.

RelatedPosts

Tantalum Capacitor History

Understanding the Influence of ESR and Ripple Current for the Capacitor Selection

Resonant OBC Capacitors

These capacitors are manufactured in an ISO TS 16949 certified plant and are subjected to PPAP/PSW and change control. They are ideal for automotive applications needing a main power system backup during a power loss, such as ADAS, autonomous vehicles, and central gateway ECUs. Supercapacitors are ideal for maintaining the main power system’s real-time clock or volatile memory when it is removed, such as during a power failure or when the main power system’s battery has been removed for replacement. Additionally, these supercapacitors offer power backup in equipment ranging from IoT devices, smart meters, medical devices, and industrial computing.

Using supercapacitors for automotive electronics enables freedom from the design limits imposed by finite battery lifetimes. The supercapacitor’s benign open-circuit failure mode contrasts with typical short-circuit battery failures that may result in outgassing or ignition. Furthermore, supercapacitors are a cost-effective alternative to small backup batteries. Depending on the type of load and current demand, they can store enough energy to provide backup for durations ranging from a few seconds to several hours.

KEMET’s miniature supercapacitors use a proprietary aqueous electrolyte solution that provides high durability against liquid leakage, vibrations, and thermal shock, thus high reliability in harsh environments. Aqueous electrolytes are highly conductive, have a low environmental impact, and are non-toxic and non-flammable. Unlike a battery, supercapacitors store and release energy quickly through physical adsorption and the ions desorption in the electrolyte between its electrodes.  With the supercapacitor’s low internal resistance, these devices can fully charge within a few seconds. In contrast, a secondary battery cell can take from ten minutes to several hours to fully charge. Moreover, there is no theoretical limit to the life cycle, whereas a lithium-ion secondary cell has a finite lifetime of about 500 cycles. They also typically have a greater resistance to moisture absorption than organic compounds, resulting in a longer life with better stability.

According to an Allied Market Research report, the global supercapacitor market generated $3.27 billion in 2019 and is estimated to reach $16.95 billion by 2027, with a CAGR of 23.3% from 2020 to 2027.* An increase in demand for automotive applications, renewable energy systems, and supportive government regulations is boosting the growth of the global supercapacitor market.

*Source: “Supercapacitor Market by Product Type (Double-Layer Capacitor, Pseudocapacitors, and Hybrid Capacitors), Module Type (Less Than 10 Volts Modules, 10 Volts to 25 Volts Modules, 25 Volts to 50 Volts Modules, 50 Volts to 100 Volts Modules, and Above 100 Volts Modules), Material (Activated carbon, Carbide Derived Carbon, Carbon Aerogel, and Others), and Application (Automotive, Industrial, Energy, Consumer Electronics, and Aerospace & Defense): Global Opportunity Analysis and Industry Forecast, 2020–2027.”

Related

Source: KEMET

Recent Posts

2025 Annual Capacitor Technology Dossier

23.1.2026
19

Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

23.1.2026
16

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
11

Passive Components in Quantum Computing

22.1.2026
63

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
23

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
46

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
32

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
106

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
54

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version