Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

    Bourns Releases High Power High Ripple Chokes

    KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

    Radiation Tolerance of Tantalum and Ceramic Capacitors

    TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KYOCERA AVX Extends High-Temp Max-Cap Wet Tantalum Capacitors

14.12.2023
Reading Time: 2 mins read
A A

KYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, added a new 100mF/3V rating to its TWD High-Temp Max-Cap (HTMC) Series hermetically sealed and axial leaded DLA T4-size wet tantalum capacitors.

Initially released to market in 2016 with only two ratings (25mF/10V and 50mF/6.3V), the TWD HTMC Series delivers extremely high capacitance values, comparable to those of supercapacitors, as well as stable, high-reliability long-lifetime performance in industrial, oil & gas, defense, and avionics applications exposed to environmental hazards including mechanical shock, high-frequency vibration, and operating temperatures up to 175°C.

RelatedPosts

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

Radiation Tolerance of Tantalum and Ceramic Capacitors

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

TWD HTMC Series capacitors are manufactured using high-purity tantalum powders and KYOCERA AVX’s well-established wet tantalum design, which features a hermetically sealed welded tantalum can with a unique cathode system that enables extraordinary CV/cc performance and an optional insulation sleeve.

They exhibit rugged resistance to shock and vibration per MIL-PRF-39006, stable electrical parameters over the full range of operating temperatures extending from -55°C to +175°C, and outstanding reliability, offering extended lifetimes of up to 10,000 hours at +105°C and rated voltage and up to 2,000 hours at +175°C and rated voltage.

Ideal applications for the series include DC hold-up and low-frequency pulse circuits in specialized industrial, avionics, defense, and oil & gas applications that require high-reliability high-capacitance performance at high temperatures, such as downhole drilling equipment.

“We are very pleased to expand on our field-proven TWD HTMC Series hermetically sealed and axial leaded wet tantalum capacitors,” said Allen Mayar, Global Product Manager at KYOCERA AVX. “These capacitors are produced and qualified at our highly accredited facility in Lanskroun, Czech Republic, and deliver high-reliability long-lifetime performance and extremely high capacitance, comparable to that of supercapacitors, in harsh-environment applications with operating temperatures up to 175°C.”

TWD HTMC Series capacitors are currently available in three ratings — 25mF/10V, 50mF/6.3V, and 100mF/3V with ±10% and ±20% capacitance tolerance — and in standard DLA T4 cases with an optional insulating sleeve and one of two termination finishes: Sn/Pb (60/40) or RoHS-compliant and lead-free compatible pure matte tin. They are shipped in tray packs and suitable for automatic mounting and soldering. Current lead-time for the series is 10–14 weeks.

Related

Source: KYOCERA AVX

Recent Posts

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
6

Bourns Releases High Power High Ripple Chokes

8.8.2025
19

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
6

Radiation Tolerance of Tantalum and Ceramic Capacitors

8.8.2025
52

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

7.8.2025
28

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
41

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

6.8.2025
9

Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

6.8.2025
36

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
33

SCHURTER Releases Chip Fuse for ATEX and Precision Applications

4.8.2025
16

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version