Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Extends SMT Gate Drive Transformers to 1000 V

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

    Connector Industry Achieves Double-Digit Growth

    Stackpole Unveils Metal Element High Current Chip Jumpers

    Common Mistakes in Flyback Transformer Specs

    Vishay Releases Miniature SMD Trimmers for Harsh Environments

    Würth Elektronik Releases Push-Button and Main Switches

    Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

KYOCERA AVX Releases Gen-2 PrizmaCap Supercapacitors

27.10.2023
Reading Time: 2 mins read
A A

The new Gen II PrizmaCap supercapacitors deliver higher capacitance, voltage, and energy density than Gen I PrizmaCaps and exhibit higher reliability across a wider range of operating temperatures. Ideal applications extend across the medical, consumer, commercial, and industrial electronics industries.

KYOCERA AVX, a leading global manufacturer of advanced electronic components engineered to accelerate technological innovation and build a better future, expanded its PrizmaCap line of rugged, high-capacitance, and high-reliability supercapacitors with the release of two new Gen II series.

RelatedPosts

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

Radiation Tolerance of Tantalum and Ceramic Capacitors

KYOCERA AVX Releases 600MHz Band71 Compact SAW Duplexer

The new Gen II PrizmaCap supercapacitors, also known as prismatic electrochemical double-layer capacitors (EDLCs), deliver higher capacitance, voltage, and energy density than Gen I PrizmaCaps and exhibit higher reliability across a wider range of operating temperatures. Gen II PrizmaCap supercapacitors also feature a rugged, lightweight, and low-profile SMT package equipped with fixed position terminals that extend from the same end and compatible with hand soldering.

The new PrizmaCap SCP 2.5V Series supercapacitors deliver the lowest profile and widest operating temperature range of any KYOCERA AVX supercapacitor. They are rated for operating temperatures extending from -40°C to +65°C at 2.5V and -40°C to +85°C derated to 2.0V. The new PrizmaCap SCP 2.5V HT Series supercapacitors deliver the lowest profile and highest operating temperature of any KYOCERA AVX supercapacitor. They are rated for operating temperatures extending from -25°C to +65°C at 2.5V and -25°C to +105°C derated to 2.0V.

Both series measure 50mm x 46mm (L x W) with a maximum thickness of 2.3 for 6F parts, 2.8mm for 13F parts, and 3.4mm for 20F parts. They are rated for 2.5V, exhibit S-level tolerance (+30%/-10%), and are backed by high-reliability testing for lifecycle, high-temperature load life, temperature and humidity characteristics, and vibration resistance.

Gen II PrizmaCap supercapacitors are designed for use in applications that require pulse power handling, energy storage, power hold-up, and battery assist and can be used by themselves or in conjunction with primary or secondary batteries to provide extended backup time, longer battery life, and instantaneous power pulses as needed. Ideal applications include medical devices, tablets, e-readers, IoT and IIoT devices, VR wearables, handheld electronics, Bluetooth keyboards, and power peripherals.

They are lead-free compatible and compliant with IEC 62391-2-2006, UL 810A, RoHS, and REACH requirements and are shipped in tray packaging. Lead-time for standard parts is currently 18 weeks and will vary for custom designs.

Related

Source: KYOCERA AVX

Recent Posts

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
12

Non-Linear MLCC Class II Capacitor Measurements Challenges

19.8.2025
20

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
13

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
17

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
13

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
10

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
11

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
133

Bourns Releases High Power High Ripple Chokes

8.8.2025
34

KYOCERA AVX Releases Hermaphroditic WTW and WTB Connectors

8.8.2025
15

Upcoming Events

Aug 27
17:00 - 18:00 CEST

Capacitor Assemblies for High-Power Circuit Designs

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version