Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Modelithics Library for MATLAB: Measurement-Based Models for Microwave and RF Passive Components

    Bourns Extends Multilayer Chip Inductors Offer for RF and Wireless Designs

    Researchers developed a polymer capacitor by combining two cheap, commercially available plastics. The new polymer capacitor makes use of the transparent material — pictured here, with vintage Penn State athletic marks visible through it — to store four times the energy and withstand significantly more heat.  Credit: Penn State

    Penn State Demonstrated Polymer Alloy Capacitor Film with 4× Energy Density up to 250C

    ECIA January 2026 Reports Strong Sales Confidence

    Vishay Unveils Ultra-Compact 0201 Thick Film Chip Resistors

    Würth Elektronik Component Data Live in Accuris

    Coilcraft Releases Automotive Common Mode Chokes

    MLCC Manufacturers Consider Price Increase as AI Demand Outpaces Supply

    YAGEO Extends Antenna Portfolio with Wi‑Fi 6E/7 and Tri‑band GNSS Solutions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    2026 Power Magnetics Design Trends: Flyback, DAB and Planar

    Enabling Software‑Defined Vehicle Architectures: Automotive Ethernet and Zonal Smart Power

    Calculating Resistance Value of a Flyback RC Snubber 

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Littelfuse Gate Driver Integrates Diode and Current Limit Resistor in Compact IC

21.5.2025
Reading Time: 3 mins read
A A

Littelfuse IXD0579M high-Side and low-side gate driver offers compact, drop-in solution IC. Integrated bootstrap diode and resistor helps simplify high-speed designs for brushless motors, power tools, and DC-DC converters.

Littelfuse, Inc. a diversified industrial technology manufacturing company empowering a sustainable, connected, and safer world, today announced the release of the IXD0579M high-speed gate driver IC.

RelatedPosts

Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

Littelfuse Introduces Automotive Current Sensors for EV Battery, Motor, and Safety Systems

Littelfuse Completes Acquisition of Basler Electric

The IXD0579M simplifies board design, saves space, and offers a reliable, multiple-source alternative for driving N-channel MOSFETs or IGBTs in half-bridge configurations.

Designed to operate across a wide 6.5 V to 18 V supply range, the IXD0579M integrates a bootstrap diode and a series current limit resistor—components typically requiring discrete placement—into a single compact 3×3 mm² TDFN-10 package. This innovative integration reduces BOM count and cost while enabling easier PCB layout.

Key Product Features and Benefits

  • High Drive Capability: 1.5 A source and 2.5 A sink output drive current
  • Wide Supply Voltage Range: Operates from 6.5 V to 18 V with UVLO protection
  • Integrated Bootstrap Circuitry: On-chip bootstrap diode and resistor simplify design
  • Logic Level Compatibility: Interfaces directly with TTL and CMOS levels (down to 3.3 V)
  • Cross-Conduction Protection: Prevents simultaneous high-side and low-side conduction
  • Ultra-Low Standby Current: Less than 1 µA standby mode for energy efficiency
  • Thermal Robustness: Operates from −40 °C to +125 °C

“With the IXD0579M, Littelfuse is offering a direct drop-in replacement for popular industry-standard gate driver ICs,” said June Zhang, Product Manager, Integrated Circuits Division at Littelfuse. “This gives customers greater flexibility to secure supply while simplifying their circuit design with an integrated solution.”

The IXD0579M is the first Littelfuse gate driver to feature both an integrated bootstrap diode and current limit resistor, expanding the company’s growing portfolio of power control solutions. As the eleventh high-side/low-side driver released by Littelfuse, it strengthens the company’s position in serving “multiple source” markets that demand performance and supply chain continuity.

Target Markets and Applications

Engineered for high-frequency switching, the IXD0579M is ideal for:

  • Brushless DC (BLDC) motor drives
  • Battery-powered hand tools
  • DC-DC converters and power supplies
  • General industrial and electrical equipment

It’s compact footprint and robust performance make it well-suited for space-constrained designs and high-efficiency power stages.

Related

Source: Littelfuse

Recent Posts

2026 Power Magnetics Design Trends: Flyback, DAB and Planar

13.2.2026
41

Calculating Resistance Value of a Flyback RC Snubber 

2.2.2026
59

Power Electronics Tools for Passives and Magnetic Designs

3.2.2026
110

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
287

Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

30.10.2025
50

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
267

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
106

Resonant Capacitors in High-Power Resonant Circuits

1.10.2025
110

Efficient Power Converters: Duty Cycle vs Conduction Losses

29.9.2025
167

Upcoming Events

Feb 24
16:00 - 17:00 CET

Mastering Galvanic Isolation: Ensuring Safety in Power Electronics

Mar 3
16:00 - 17:00 CET

Cybersecurity at the Eleventh Hour – from RED to CRA – Information and Discussion

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • 3-Phase EMI Filter Design, Simulation, Calculation and Test

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version