Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Littelfuse Releases Asymmetrical TVS Diodes for Protection of Automotive SiC MOSFETs

13.12.2024
Reading Time: 3 mins read
A A

New TPSMB asymmetrical TVS Diodes from Littelfuse provide superior gate driver protection for automotive SiC MOSFETs. Engineered for next-gen EV infrastructure, delivering compact, single-component solutions for power efficient onboard charging and inverters.

Littelfuse Inc, an industrial technology manufacturing company empowering a sustainable, connected, and safer world, announced the launch of its TPSMB Asymmetrical TVS Diode Series, the first-to-market asymmetrical transient voltage suppression (TVS) diode specifically designed for the protection of Silicon Carbide (SiC) MOSFET gate drivers in automotive applications.

RelatedPosts

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

Littelfuse Compact Tactile Switch Offers Low-Noise Switching and Dust Protection

Littelfuse Releases Harsh Environment Robust Tactile Switches

This innovative product addresses the increasing demand for reliable overvoltage protection in next-generation electric vehicle (EV) systems, delivering a compact, single-component solution that replaces multiple Zener diodes or TVS components traditionally used for gate driver protection. View the video.

The TPSMB Asymmetrical TVS Diode Series provides superior protection for SiC MOSFET gate drivers, which are prone to overvoltage events due to faster switching speeds compared to traditional silicon-based MOSFETs or IGBTs. The unique asymmetrical design of the TPSMB Series supports SiC MOSFETs’ differing positive and negative gate driver voltage ratings, ensuring enhanced performance in a variety of demanding automotive power applications where SiC MOSFETs are used, including:

  • Onboard chargers (OBCs)
  • EV traction Inverters
  • I/O interfaces
  • Vcc buses

These applications demand high-performance overvoltage protection (OVP) for SiC MOSFET gate drivers to ensure optimal performance, longevity, and efficiency.

Charlie Cai, Director of Product Management, Protection Business, Littelfuse, emphasizes the value this product brings to automotive engineers: “The TPSMB Asymmetrical TVS Diode Series offers an innovative solution for SiC MOSFET gate driver protection, eliminating the need for multiple components and simplifying the design process for engineers. Its compact, reliable design ensures that critical automotive power systems are safeguarded against overvoltage events, supporting the continued advancement of electric vehicles and other high-performance applications.”

The TPSMB Asymmetrical Series Surface-Mount TVS Diode offers the following key features and benefits:

  • A Single-Component SiC MOSFET Gate Driver Protection: Eliminates the need for multiple Zener or TVS diodes, streamlining design and reducing component count.
  • Asymmetrical Gate Driver Voltage Protection: Designed to protect SiC MOSFET gate drivers, which require different negative and positive voltage ratings.
  • Compact Design: Available in a DO-214AA (SMB J-Bend) package, the series is ideal for space-constrained automotive designs.
  • Automotive-Grade Quality: AEC-Q101-qualified, ensuring the highest reliability for automotive applications.
  • High Power Dissipation: 600W peak pulse power dissipation (10×1000μs waveform) offers robust protection against transient overvoltage events.
  • Low Clamping Voltage: VC < 10 V @ 30 A (8/20 µs) for optimal negative gate drive protection.
  • Wide Frequency Stability: Stable capacitance across a wide operating frequency range, up to 2 MHz, making it ideal for SiC MOSFET applications.
  • Compatible with Leading SiC MOSFETs: Suited for use with Littelfuse and other market-leading automotive SiC MOSFETs.

Availability
The TPSMB Asymmetrical Series Surface-Mount TVS Diode is available in tape and reel format in quantities of 3,000. Sample requests are accepted through authorized Littelfuse distributors worldwide. 

Related

Source: Littelfuse

Recent Posts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
1

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
9

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
8

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
15

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
41

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
18

Littelfuse Unveils High-Precision TMR Angle Magnetic Sensors

13.8.2025
13

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
15

High Voltage MLCCs Meeting the Growing Demand for Efficiency in Power Conversion

12.8.2025
164

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version