Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

    Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

    Bourns Releases Automotive High Creepage and Clearance Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Making a New Generation of Memristors for Digital Memory and Computation

4.2.2016
Reading Time: 2 mins read
A A

source: ECN news

Wed, 02/03/2016 – 9:24am by Michigan Technological University
Memristors are a new class of electrical circuits—and they could end the silicon era and change electronics forever. Since HP first developed a working prototype with a titanium dioxide film in 2008, engineers have sought to perfect the model.

RelatedPosts

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

DigiKey Presents Factory Tomorrow Season 5 Video Series

Samsung MLCCs Lineup for In-Vehicle Infotainment

Now, researchers at Michigan Technological University have made an ideal memristor based on molybdenum disulfide nanosheets. Yun Hang Hu, the Charles and Carroll McArthur Professor of Materials Science and Engineering, led the research, which was published in Nano Letters this January.

Beyond Binary Code

Transistors based on silicon, which is the main component of computer chips, work using a flow of electrons. If the flow of electrons is interrupted in a transistor, all information is lost. However, memristors are electrical devices with memory; their resistance is dependent on the dynamic evolution of internal state variables. In other words, memristors can remember the amount of charge that was flowing through the material and retain the data even when the power is turned off.

“Memristors can be used to create super-fast memory chips with more data at less energy consumption” Hu says.

Additionally, a transistor is confined by binary codes—all the ones and zeros that run the internet, Candy Crush games, Fitbits and home computers. In contrast, memristors function in a similar way to a human brain using multiple levels, actually every number between zero and one. Memristors will lead to a revolution for computers and provide a chance to create human-like artificial intelligence.

“Different from an electrical resistor that has a fixed resistance, a memristor possesses a voltage-dependent resistance.” Hu explains, adding that a material’s electric properties are key. “A memristor material must have a resistance that can reversibly change with voltage.”

His research revealed that molybdenum disulfide nanosheets are promising for memristors. The material’s success comes down to engineering atomic structures.

An ideal memristor is symmetrical. The relationship between current and voltage is even, rounded and equal in both quadrants. In reality, memristors usually show lopsided current-voltage characteristics. However, Hu’s molybdenum disulfide memristor does show the ideal symmetry. This will make the material more predictable and consistent as it is developed for use in electronics.

To get this symmetry, Hu and his research team started with bulk molybdenum disulfide, also known as the mineral molybdenite that used as an industrial lubricant. They then manipulated the atomic, structural arrangements, referred to as different crystal phases. The bulk material with a 2H phase works well as a regular resistor, and to make it a memristor, the team peeled back the molecular layers. This exfoliation process creates molybdenum disulfide nanosheets with 1T phase. The nanosheets with1T phase exhibit a reversible change in resistance relative to voltage—necessary for a memristor. The researchers finally dispersed nanosheets on the two sides of a silver foil to form a symmetric memristor.

“This material is in the very beginning stages for this application,” Hu says, adding that new materials and better memristors could radically change the way computers are built. It will start with smaller and faster computer chips, but then he gestures around his office. “These memristor materials will be very versatile, and someday, this white board and that coffee cup could be computers.”

And having a symmetrical memristor material brings us closer to that day.

Related

Recent Posts

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
14

Researchers Demonstrated HfO Anti-Ferroelectric Flexible Capacitors

19.8.2025
20

Stackpole Unveils Metal Element High Current Chip Jumpers

19.8.2025
50

Vishay Releases Miniature SMD Trimmers for Harsh Environments

14.8.2025
25

Stackpole Extends Voltage of High Temp Chip Resistors

13.8.2025
20

Bourns Unveils High Reliability Compact Micro Encoders

5.8.2025
19

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
34

Researchers Presents High-Performance Carbon-Based Supercapacitors

1.8.2025
39

PCNS 2025 Final Program Announced!

4.8.2025
118

Bourns Released Rugged, High-Power TO-247 Thick Film Resistor

30.7.2025
19

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version