Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Murata Unveils Innovative Timing Device with Exceptional Accuracy

18.11.2024
Reading Time: 2 mins read
A A

Murata Manufacturing Co Ltd unveils a cutting-edge electronic timing device featuring exceptional accuracy ±40ppm and reliability even in wide-temperature -40°C to +125°C conditions.

By addressing the limitations of current timing components in automotive electronic systems, it enhances the design and deployment of next-generation In-Vehicle Networks (IVN), wireless communication, and Advanced Driver Assistance Systems (ADAS) functions.

RelatedPosts

Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

Murata Integrates Component Models into Cadence EDA Tools

Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

As the automotive industry continues to pursue greater integration and electronic downsizing to address the expanding number of critical electronic systems, the performance requirements for components are growing.

In order to achieve tighter packaging without compromising accuracy, it is now necessary for critical components like timing devices to have higher temperature limits. There is also a growing demand to incorporate features like Bluetooth® Low Energy (BLE) and ethernet in vehicles, which demands more accurate timing than what is typically offered by automotive crystal units.

Murata’s high accuracy and high temp automotive crystal (HCR), or XRCGE_M_F series, redefines timing component performance and reliability. It sets a new global standard as the first of its kind to achieve a total frequency tolerance of ±40 ppm throughout an operating temperature range of -40°C to +125°C. This combination allows automotive engineers to achieve the stable and highly accurate timing without the need for system calibration or temperature compensation measures, reducing development efforts and costs.

Murata has a long-standing history of being at the forefront of automotive timing solutions, starting with the introduction of its ceramic resonators in 1997 and followed by its crystal units in 2015 – HCR is the next step. Through the optimization of artificial crystal growth, assembly, and inspection, Murata’s groundbreaking resin-sealed package technology, along with the optimization of crystal design, allows HCR to achieve high-temperature operation and high accuracy. This combination is perfectly suited to support the latest vehicle communication and safety functions such as CAN and ethernet IVNs, ADAS components like cameras, LIDAR, and RADAR, as well as wireless communication technologies such as RF, NFC, BLE, Zigbee™, and UWB.

“HCR is a true step forward that perfectly aligns with the latest automotive demands,” said Munenori Hikita, Director of Functional Devices Division at Murata. “With our ‘world’s first’ solution, engineers will be able to deploy downsized designs and high performance communication circuits without compromise.”

The HCR lineup is underpinned by Murata’s stable and reliable multi-source supply chain, ensuring automotive users have no concerns over supply, while its high temperature operating window and strong resistance to solder cracks guarantee long-term reliability. The components have already entered mass production and samples are available upon request.

Related

Source: Murata

Recent Posts

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
39

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
34

Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

23.10.2025
10

Bourns Unveils Automotive 3 Watt Gate Driver Transformer

22.10.2025
8

Murata Opens EMC Test Lab in Nuremberg to Enhance Automotive Support

22.10.2025
13

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
42

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

20.10.2025
19

Bourns Release Automotive 4-Terminal Shunt Resistors

17.10.2025
23

Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

16.10.2025
18

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
47

Upcoming Events

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version