Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Wk 42 Electronics Supply Chain Digest

    Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

    September 2025 ECIA US Components Sales Sentiment Continues in Optimism

    Bourns Release Automotive 4-Terminal Shunt Resistors

    Bourns Releases High Inductance Common Mode Choke

    Vishay Releases Automotive TO-220 Case 50W Thick Film Power Resistor

    High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

    Bourns Releases High Clearance and Creepage 1500VDC Power Transformer

    KYOCERA AVX Expands Stacked MLCC Capacitors Offering

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Novel Conductive Polymer that Does Not Require Any Doping to Conduct Electricity

10.3.2020
Reading Time: 3 mins read
A A

A research group led by Simone Fabiano at the Laboratory of Organic Electronics, Linköping University has created an organic material with superb conductivity that doesn’t need to be doped. They have achieved this by mixing two polymers with different properties. 

In order to increase the conductivity of polymers, and in this way obtain higher efficiency in organic solar cells, light-emitting diodes and other bioelectronic applications, researchers have until now doped the material with various substances. Typically, this is done by either removing an electron or donating it to the semiconductor material with a dopant molecule, a strategy that increases the number of charges and thereby the conductivity of the material.

RelatedPosts

Wk 42 Electronics Supply Chain Digest

Stackpole Introduces Automotive Thick Film Wide Termination Chip Resistors

September 2025 ECIA US Components Sales Sentiment Continues in Optimism

“We normally dope our organic polymers to improve their conductivity and the device performance. The process is stable for a while, but the material degenerates and the substances we use as doping agents can eventually leach out. This is something that we want to avoid at any cost in, for example, bioelectronic applications, where the organic electronic components can give huge benefits in wearable electronics and as implants in the body”, says Associate Professor Simone Fabiano, head of the Organic Nanoelectronics group within the Laboratory of Organic Electronics at Linköping University.

A perfect match

The research group, with scientists from five countries, has now succeeded in combining the two polymers, producing a conducting ink that does not require any doping to conduct electricity. The energy levels of the two materials perfectly match, such that charges are spontaneously transferred from one polymer to the other.

The phenomenon of spontaneous charge transfer has been demonstrated before, but only for single crystals on a laboratory scale. No one has shown anything that could be used at an industrial scale. Polymers consist of large and stable molecules that are easy to deposit from solution, and that’s why they are well suited for large-scale use as ink in printed electronics”, says Simone Fabiano.

Polymers are simple and relatively cheap materials, and are commercially available. No foreign substances leach out from the new polymer mixture. It remains stable for a long time and withstands high temperatures. These properties are important for energy harvesting/storage devices as well as wearable electronics.

“Since they are free of doping agents, they are stable over time and can be used in demanding applications. The discovery of this phenomenon opens completely new possibilities for improving the performance of light-emitting diodes, solar cells and other electronic components. This is also the case for other thermoelectric applications, and not least for research within wearable and close-body electronics”, says Simone Fabiano.

A major new chapter in the field

“We have involved scientists at Linköping University and Chalmers University of Technology, and experts in the US, Germany, Japan, and China. It has been a really great experience to lead this work, which is a large and important step in the field”, he says.

Principal funding for the research has come from the Swedish Research Council and the Wallenberg Wood Science Center. It has also been conducted within the framework for the strategic initiative in advanced functional materials, AFM, at Linköping University.

“Fundamentally, doping in conducting polymers, generating high electrical conductivity, has so far only been achieved by combining a non-conducting dopant with a conducting polymer. Now, for the first time, the combination of two conducting polymers renders a composite system that is highly stable and highly conducting. This discovery defines a major new chapter in the field of conducting polymers, and will spark many novel applications and interest world-wide”, says professor Magnus Berggren, director of Laboratory of Organic Electronics at Linköping University.

Nature Materials 2020, doi 10.1038/s41563-020-0618-7

featured image source: Linköping University

Related

Source: Linköping University

Recent Posts

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
22

Murata and QuantumScape Joint Development for Solid Batteries Ceramic Separators

14.10.2025
23

Enhancing Energy Density in Nanocomposite Dielectric Capacitors

9.10.2025
36

Researchers Demonstrated High Energy Ceramic Capacitors Stable in Wide Temperature Range

2.10.2025
28
a Schematic diagram of the BNT-based components constructed based on the entropy-increase strategy. b Digital photograph, cross-sectional SEM image, and EDS mappings of the MLCCs. c Unipolar P-E loops of MLCCs as a function of applied E. d Wrec and η of the MLCCs as a function of applied E. The comparison of (e) Wrec and η, (f) η and UF of the MLCCs with those of other recently reported state-of-the-art MLCCs. source: Nature Communications

Researchers Proposed Enhanced Energy Storage MLCC

1.10.2025
24

Improving SMPS Performance with Thermal Interface Material

30.9.2025
13

Development of Nitrogen-Doped Graphene Supercapacitors 

30.9.2025
16

Flaked Tantalum Powders: High Capacitance Powders for High Reliable Tantalum Capacitors

29.9.2025
26

Life Cycle Assessment of a Graphene-Based Supercapacitor

26.9.2025
19

Advancements in Flexible End Terminations for Robust MLCCs in EV

26.9.2025
47

Upcoming Events

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Oct 28
8:00 - 15:00 CET

Power Up Your Design: SN6507 and the Ready-to-Use Development Kit

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version