Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Sumida Announces New DC Common Mode Choke Coil Series

    KYOCERA AVX Releases New 3dB Hybrid Couplers

    SCHURTER Unveils High Voltage Fuses for EV Applications

    YAGEO Releases First to Market 750V Aluminum Capacitors

    binder Introduces M9 Compact Circular Connector

    Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

    Wk 26 Electronics Supply Chain Digest

    Learn How Supercapacitors Enhance Power System in Knowles eBook

    TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Highly Reliable Flex Rigid PCBs, Würth Elektronik Webinar

    Causes of Oscillations in Flyback Converters

    How to design a 60W Flyback Transformer

    Modeling and Simulation of Leakage Inductance

    Power Inductor Considerations for AI High Power Computing – Vishay Video

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Panasonic Commercializes Conductive Polymer Hybrid Aluminum Electrolytic Capacitors with the Industry’s Largest Ripple Current

30.11.2020
Reading Time: 4 mins read
A A

Panasonic Corporation announced today that its Industrial Solutions Company has commercialized new conductive polymer hybrid aluminum electrolytic capacitors, the large-current ZU series, and large-capacitance ZSU series for use in automotive ECUs (electronic control units) [1].

Mass production will start in December 2020. The new ZU series has achieved ripple current*1 of over 1.4 times as large as the conventional ZS series (ϕ10 x 12.5 mm and ϕ10 x 16.5 mm), supporting increases in circuit load current due to high performance automotive ECUs and contributing to smaller automotive ECUs through a reduction in the number of required capacitors.

RelatedPosts

Sumida Announces New DC Common Mode Choke Coil Series

KYOCERA AVX Releases New 3dB Hybrid Couplers

SCHURTER Unveils High Voltage Fuses for EV Applications

*1: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Conductive polymer hybrid aluminum electrolytic capacitors feature low resistance and high reliability with a fusion of conductive polymer and electrolyte and are used in a wide range of applications, from control circuits in automotive engine ECUs, BMSs (battery management systems) [2], to motor drive circuits in 48 V system ISGs (integrated starter generators) [3], electric pumps, radiator fans, and further to ADAS applications (such as cameras, sensors, and control circuits). The progress in electrification and self-driving technology has led to the higher performance of automotive ECUs, which have increased circuit load currents.

The progress has also led to the implementation of redundant design [4] aiming to improve safety and reliability, resulting in use of increased number of automotive ECUs by mounting two sets of circuits in the same ECU, for example. Reducing board size is necessary for smaller mounting space, requiring cutting the number and size of capacitors by increased current and capacitance. To meet these requirements, Panasonic has commercialized the ZU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest ripple current by using high conductivity polymer formation technology and in-capacitor low resistance technology.

ZU series conductive polymer hybrid aluminum electrolytic capacitors features:

  1. The industry’s largest ripple current supports increases in circuit load current and saves board space.The ZU series has achieved ripple current of over 1.4 times as large as the conventional ZS series.
  2. Same capacitance value as conventional hybrid capacitors. The series has achieved large capacitance equivalent to the ZS series.
  3. Support high-temperature environments, guaranteed up to 135ºCThe series offers a guaranteed life of up to 4000 hours at 135ºC in addition to the 4000 hour, 125ºC guarantee for the conventional ZS series products.

Applications

  • Current noise reduction and voltage stabilization in motor drive circuits (DC-link capacitors)
    ・ 48 V system ISGs of mild hybrid cars
    ・ Motor drive applications mounted on xEVs (oil pumps, water pumps, electric power steering, electric compressors, etc.)
  • High output DC/DC power supply (input filter capacitors, output smoothing capacitors)

Product Features

  1. The industry’s largest currents support increases in circuit load current and save board space.The capacitors have achieved the higher conductivity of electrolytes through the use of Panasonic’s unique conductive polymer formation technology, as well as lowering resistances inside the capacitors through the recent technology of low-resistance lead wires. This has achieved ripple current of over 1.4 times as large as the conventional ZS series, enabling a reduction in the number of required capacitors, from the use of several capacitors in parallel, as well as a reduction in the size of capacitors with the same rating, thereby contributing to board area reduction and application downsizing.
  2. Same capacitance value and reliability as conventional conductive polymer hybrid aluminum electrolytic capacitors. The ZU series has achieved large capacitance equivalent to the ZS series of conventional conductive polymer hybrid aluminum electrolytic capacitors by applying the same design of large-capacity and high-reliability.
  3. Support high-temperature environments, guaranteed up to 135ºCBy further improving the heat resistance reliability of materials based on the design that enabled the 125ºC, 4000 hour guarantee for the conventional ZS series products, the ZU series has achieved the 135ºC, 4000 hour guarantee.

Panasonic also commercializes the ZSU series conductive polymer hybrid aluminum electrolytic capacitors with the industry’s largest capacitance*2

By adopting large-capacitance anode and cathode foils, the ZSU series has achieved 1.2 to 1.8 times as large capacitance value as the conventional ZS series products. Mass production will be launched in December 2020.

*2: As conductive polymer hybrid aluminum electrolytic capacitors of the same size as of November 10, 2020 (according to research by Panasonic)

Basic specifications

Term Descriptions

[1] Automotive ECU (Electronic Control Unit)
Unit for electronically controlling systems in a vehicle.
[2] BMS (Battery Management System)
System for controlling the charge/discharge of lithium-ion batteries in xEV.
[3] 48 V system ISG (Integrated Starter Generator)
Generator that also has functions as a starter mounted in mild hybrid vehicles.
[4] Redundant design
Progress in automatic driving requires safety designs. Redundant design enables normal operation to continue, even if one circuit fails, by using another circuit.

Related

Source: Panasonic

Recent Posts

Sumida Announces New DC Common Mode Choke Coil Series

1.7.2025
2

SCHURTER Unveils High Voltage Fuses for EV Applications

30.6.2025
1

YAGEO Releases First to Market 750V Aluminum Capacitors

30.6.2025
19

Smolteks CNF-MIM Capacitors Meet Thermal and Voltage Stability Industry Requirements

30.6.2025
8

Learn How Supercapacitors Enhance Power System in Knowles eBook

30.6.2025
4

TDK Releases Industry First 1uF 100V X7R MLCCs in 1608 Case

27.6.2025
12

YAGEO Expands One Turn Inductors for AI and High-Efficiency Power Applications

27.6.2025
25

YAGEO Extends Lifetime of its Aluminum SMD Chip Capacitors to 5500hrs at 125C/Ur

27.6.2025
16

Murata Releases Worlds First 10µF/50V Automotive MLCC in 0805 Size

26.6.2025
44

Würth Elektronik Extends High Saturation Flat-Wire Power Inductors Line

26.6.2025
16

Upcoming Events

Jul 23
13:00 - 14:00 CEST

PCB design for a Smartwatch

Jul 29
16:00 - 17:00 CEST

Impact of Elevated Voltage and Temperature on Molded Power Inductors in DC/DC converters

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Why Low ESR Matters in Capacitor Design

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version