Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

    Knowles Unveils High-Performance Safety-Certified MLCC Capacitors

    Vishay Releases High Saturation 180C Automotive Inductors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Bourns Unveils High Reliability Compact Micro Encoders

    July 2025 ECST Components Survey Continue with Strong Sales Sentiment

    SCHURTER Releases Chip Fuse for ATEX and Precision Applications

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Accelerating Full Bridge LLC Resonant Converter Design with Frenetic AI

    Understanding Switched Capacitor Converters

    Coupled Inductors Circuit Model and Examples of its Applications

    Inductor Resonances and its Impact to EMI

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

6.8.2025
Reading Time: 3 mins read
A A

This Würth Elektronik webinar presentation delves into the significance of molded power inductors in today’s market, focusing on the phenomenon of degradation and the newly identified percolation effect, its detection, and its influence on DC-DC converter design.

The higher electrical and thermal stresses over time can lead to an increase in magnetic core loss due to the degradation of the insulation between magnetic particles.

RelatedPosts

Würth Elektronik Offers Accessory Humidity Sensor Filter Cap

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

Würth Elektronik defines this degradation as a percolation phenomenon. But what exactly is percolation and what are its repercussions? And more importantly, how does it affect the long-term performance of a DC/DC converter?

Percolation Phenomenon and Reliability of Molded Power Inductors

Molded power inductors are witnessing a robust growth trajectory despite current economic challenges. Projections indicate an expansion from 2.5 million units to nearly 5 million, with a CAGR of 6.6%. This growth is driven by advancements in GaN technologies, SiC families, and the rising demand for efficient, reliable components in automotive and smart devices.

Importance of Reliability

Reliability stands as a critical factor due to increasing applications in AI, embedded systems, and high-voltage designs. Traditionally, capacitors and cooling systems were considered primary failure points in DC-DC converters. However, recent insights reveal that molded power inductors also present reliability concerns due to an unexpected degradation phenomenon.

Discovery of the Percolation Phenomenon

Our research uncovered a degradation pattern not attributed to conventional factors like temperature or saturation. Instead, we identified a percolation phenomenon—an internal flow of energy through connected particles within the inductor material. This transition from an insulated to a conductive state significantly impacts performance, leading to increased core losses and reduced efficiency.

Experimental Analysis

Through simulations and real-world application tests, we observed:

  • Ripple Current Variations: Unexpected increases in ripple current indicating percolation onset.
  • Temperature and Voltage Stress: High thermal and electrical stress accelerated the formation of percolation networks.
  • Material Degradation: Changes in inductance and resistance values, even without visible physical cracks, suggesting internal structural failures.

Implications for DC-DC Converter Design

The percolation effect results in:

  • Increased power losses and reduced efficiency.
  • Elevated harmonic distortions impacting sensitive applications like wireless communication and embedded systems.
  • Potential thermal runaway scenarios if not detected early.

Mitigation Strategies

To address these challenges:

  1. Enhanced Material Composition: Using advanced binders and coatings to delay percolation onset.
  2. High-Temperature Testing: Prolonged testing beyond standard 1,000-hour benchmarks to identify latent degradation.
  3. Improved Detection Techniques: Monitoring changes in Q-factor and ripple current to detect early signs of percolation.

Conclusion

The percolation phenomenon represents a pivotal discovery in understanding the long-term reliability of molded power inductors. Our continued research at Bure Electronics aims to develop materials and designs that mitigate this effect, ensuring robust performance across diverse applications.

Related

Source: Würth Elektronik

Recent Posts

Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

6.8.2025
0

Vishay Releases High Saturation 180C Automotive Inductors

6.8.2025
2

How to Calculate the Output Capacitor for a Switching Power Supply

6.8.2025
3

Additive Manufacturing of Mn-Zn Ferrite Planar Inductors

4.8.2025
8

Evaluation and Modeling of Supercapacitors for Reliability of Lifetime Predictions

4.8.2025
16

PCNS 2025 Final Program Announced!

4.8.2025
57

TDK Announced Wide Frequency Automotive Wirewound POC Inductors

30.7.2025
35

Bourns Announced Shielded Power Inductor with High Saturation and Low Radiation

30.7.2025
21

Würth Elektronik Expands MagI³C with Variable Step-Down Modules

30.7.2025
22

Switched Capacitor Converter Explained

28.7.2025
37

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 21
October 21 @ 12:00 - October 23 @ 14:15 EDT

Space and Military Standards for Hybrids and RF Microwave Modules

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version