Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

    Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

    Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

    Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

    Samtec Releases 800-Position High-Performance Array Connectors  

    DigiKey Announces Back to School Giveaway to Empower Tomorrow’s Innovators

    Ripple Steering in Coupled Inductors: SEPIC Case

    TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

    Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Power Inductors in Automotive Applications

22.11.2022
Reading Time: 4 mins read
A A

TDK blog article discusses use of power inductors in the electrification of cars including ADAS and EVs.

The automobile has been undergoing a substantial transformation in recent years. With the advent of Advanced Driver Assistance Systems (ADAS), the shift toward electric vehicles, and the growing sophistication of infotainment, cars have evolved to the point where they can be considered advanced electronic devices.

RelatedPosts

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

TDK Extends SMT Gate Drive Transformers to 1000 V

TDK Releases Compact Polypropylene Film Capacitors for Resonant Topologies

Electronic components are playing vital roles in this transformation. This article takes a close look at an electronic component that underpins the further evolution of automobiles: the power inductor for automotive applications.

Cars are rapidly turning electric

Against the backdrop of growing worldwide attention to carbon neutrality, major car manufacturers have been announcing their forays into the electric vehicle (EV) market one after another. xEVs, which refer to vehicles powered partially or entirely by batteries and motors, are leading the trend. The automotive industry is also experiencing a massive wave of technological innovation, as seen in the accelerating development of ADAS, which assist in driving using cameras and sensors to detect surrounding information, as well as in autonomous driving technologies.

With the shift toward EVs and electronics, the number of onboard Electronic Control Units (ECUs) —computers that control engines, motors, brakes, and sensors—is rising. In fact, more than a hundred ECUs can be found in the latest cars. Cars are equipped with a variety of ECUs—those related to the powertrain, information processing, and safety—electronically controlling various vehicle functions. The number of ECUs is climbing year by year.

Automotive ECUs by category

The role of automotive electronic components

All ECUs contain DC-DC converters that adjust the battery’s voltage to optimum levels. The power inductor is a critical component that determines the performance of these converters. Inductors pass direct current (DC) freely while behaving like resistance against alternating current (AC). When coupled with ICs that perform high-speed switching, they enable DC-DC converters to convert voltages to the required levels.

Power inductors are broadly classified into wire wound, multilayer, and thin-film types, depending on their construction. The wire wound type is characterized by its ability to carry large currents; a variety of products paired with ferrite or soft magnetic metal cores are available. The multilayer and thin-film types can be made smaller and thinner; recent years have seen their ability to handle larger currents. Because ECUs require DC-DC converters optimal for the devices they control, a broad range of power inductor products with distinct characteristics is needed.

Demand forecast for automotive power inductors

The growing demand for ECUs is expected to drive demand for automotive inductors significantly. Source:TDK 2020 value represented as 100. Based on research by TDK)

With the growing number of ECUs installed in cars, demand is surging for electronic components like inductors, capacitors, and EMC products. Global demand for automotive inductors is expected to continue expanding, approximately doubling that of 2020 by 2030.(Based on research by TDK)

TDK power inductors cover a broad range of characteristics

As xEVs and autonomous driving evolve, so do the performance requirements for automotive electronic components. Since the safety of the occupants and the surroundings is closely tied to automotive functions like autonomous driving and collision safety systems, electronic components are required to be more reliable and higher-performance than ever before. And because DC-DC converters are trending toward higher-frequency switching to reduce size and weight, power inductors must also be able to handle higher frequencies.

TDK offers an extensive lineup of power inductors designed for automotive applications to support ECUs with different inductance and current requirements based on their roles, such as for ADAS, sensors, and image processing. They deliver robust reliability by reducing the risk of failures to extreme extents, serving the sophisticated needs of autonomous driving technologies. They are also resilient against noise, a benefit that complements the increasingly higher operating frequencies of switching elements.

Hitoshi Okubo of TDK Corporation’s Magnetics Business Group discussed the strengths of TDK’s automotive power inductors. “Cars have become smarter in recent years with enhanced safety capabilities like ADAS and autonomous driving, richer infotainment features, and telematics. Because the number of electronic equipment in cars is expected to continue growing, we are looking forward to a significant expansion of the playing field for our products. At the same time, however, malfunctions in electronic equipment now have substantially adverse implications on automotive safety, so the demand for ‘zero-defect’ quality is stronger than ever. TDK offers compact, feature-rich, highly reliable inductor products by leveraging various construction methods, including wire wound, multilayer, and thin film. In particular, thin-film power inductors designed for automotive applications—which combine TDK’s proprietary thin-film and long-cultivated magnetic material technologies to produce characteristics unavailable in conventional products—offer superior properties and high reliability despite their compact size. We will continue to respond to the market’s needs by providing a wide range of products that suit customer applications.”

Related

Source: TDK

Recent Posts

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
3

Modelithics Release Discrete Components Optimization Article for RF/Microwave Designers

28.8.2025
10

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

28.8.2025
12

Ripple Steering in Coupled Inductors: SEPIC Case

27.8.2025
12

TDK Releases Low Loss Thin-Film Inductors for AI Data Centers

27.8.2025
10

SEPIC Converter with Coupled and Uncoupled Inductors

26.8.2025
20

Coupled Inductors in SEPIC versus Flyback Converters

26.8.2025
14

Vishay Releases High Current 3.3 V to 36 V ESD Protection Diodes

25.8.2025
15

TDK Extends SMT Gate Drive Transformers to 1000 V

20.8.2025
21

Connector Industry Achieves Double-Digit Growth

19.8.2025
19

Upcoming Events

Sep 3
15:30 - 17:30 CEST

How to Choose Your Magnetic Supplier

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0
  • MLCC Case Sizes Standards Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version