Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    2025 Annual Capacitor Technology Dossier

    Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

    ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

    January 2026 Interconnect, Passives and Electromechanical Components Market Insights

    Passive Components in Quantum Computing

    0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

    Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

    Exxelia Offers Custom Naval Transformers and Inductors

    Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • DossiersNew
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Extends its MLCC Automotive Powertrains Lineup

12.4.2022
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics develops 13 types of MLCC ceramic capacitors for automotive powertrains application.

Samsung Electro-Mechanics has developed high-temperature MLCCs that can be applied to automotive powertrains in a move to target the automotive market.

RelatedPosts

Samsung Unveils World First CLLC Resonant 1kV 33nF C0G MLCC in 1210 Size

Samsung MLCC Replacing Aluminum Polymer Capacitors in AI Systems

Samsungs Low ESL MLCCs to Power Next-Generation ADAS SoCs

Samsung Electro-Mechanics announced that it has developed 13 types of automotive high-temperature MLCCs with guaranteed use in a 150℃ environment with plans to supply them to global auto parts manufacturers. High-reliability automotive MLCCs with guaranteed use at 150℃ have been produced only by some overseas companies, but with this development, Samsung Electro-Mechanics will step up its efforts to expand its market share by increasing its product competitiveness with an extended lineup of automotive components.

The new products come in various sizes and capacitance, ranging from the 3225 size that is 3.2mm wide and 2.5mm long with a high-capacitance of 22uF to the smaller 1608 size with 220nF. (▲3225 size 22uF, 4.7uF, 2.2uF(3 types), ▲3216 10uF, 2.2uF, 1uF, ▲2012 10uF, 4.7uF, 2.2uF, 1uF, 470nF, 220nF, ▲1608 220nF).

The powertrain requires high reliability for internal components as the internal operating temperature can rise up to 150°C due to high power consumption and heat generation from powering the core driving system of a vehicle, such as the engine of an internal combustion engine (ICE) or the motor of an electric vehicle (EV).

MLCC ceramic capacitors for automotive powertrain application; source: Samsung Electro-Mechanics

In an environment above the guaranteed temperature, MLCCs tend to lose their capacitance to store energy. In general, 85℃ for IT devices and 125℃ for electric equipment are guaranteed but a 150℃ guarantee is required for the powertrain.

The newly developed high-temperature MLCCs are capable of normal operation without reduced capacitance even in an extreme environment of 150℃. Due to technical complexities involving raw material development and construction technology, this type of product is currently produced only by a small number of overseas companies.

“Automotive products used in extreme environments are more difficult to develop than products for IT devices, and among them, powertrain applications are the most difficult” said Kim Dooyoung, head of the Component Solution Unit, Samsung Electro-Mechanics. “Samsung Electro-Mechanics will further expand our presence in the automotive MLCC market by using differentiated materials and manufacturing techniques, such as in-house development of dielectric material.”

The electrification of automobiles has fueled the demand for small-size, high-performance, and high-reliability MLCCs. The automotive MLCC market is projected to grow at a CAGR of 9% in line with the efficient fuel consumption of ICE vehicles and EVs and the increasing number of sensors and electronic control units (ECUs) for motor control.

Samsung Electro-Mechanics is bolstering its lineup of high-value-added automotive products with high-temperature, high-voltage, and high-reliability characteristics based on its technological edge in the ultra-compact and ultra-high-capacity MLCC sector, and expanding the supply of MLCCs to global auto parts manufacturers and car makers.

Related

Source: Samsung Electro-Mechanics

Recent Posts

2025 Annual Capacitor Technology Dossier

23.1.2026
8

Panasonic High Precision Chip Resistors Bridge Gap Between Thin and Thick Technology

23.1.2026
13

ROHM Extends 2012 Shunt Resistors Power Rating up to 1.25 W

23.1.2026
11

Passive Components in Quantum Computing

22.1.2026
57

0603 Automotive Chip Varistors as TVS Diode Replacements, TDK Tech Note

21.1.2026
22

Miniaturization of MLCCs and Electrolytics, KAVX Tech Chat

21.1.2026
44

Researchers Demonstrated 32nm Aluminum Vacuum Gap Capacitor

20.1.2026
31

Conductive Polymer Capacitor Market and Design‑In Guide to 2035

20.1.2026
100

TDK Releases High Performance 105C DC Link Film Capacitors

19.1.2026
54

Upcoming Events

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

Mar 21
All day

PSMA Capacitor Workshop 2026

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version