Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

    EMI Noise Mitigation in Automotive 48V Power Supply Systems

    Bourns Introduced 15A Compact Common Mode Choke

    Vishay Announces UL Recognition of its NTC Thermistor

    AI Hardware Development and Its Consequences for Passive Electronic Components

    KYOCERA AVX Capacitors in AI Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

    Silicon Capacitors Reliable Performance in Harsh Conditions

    Tantalum Capacitor Technology Advantages for Harsh Environment

    Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

    EMI Noise Mitigation in Automotive 48V Power Supply Systems

    Bourns Introduced 15A Compact Common Mode Choke

    Vishay Announces UL Recognition of its NTC Thermistor

    AI Hardware Development and Its Consequences for Passive Electronic Components

    KYOCERA AVX Capacitors in AI Systems

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics High Capacitance MLCCs for ADAS SoCs

30.5.2025
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics propose compact, high-capacitance, low ESL MLCCs ceramic capacitors for automotive ADAS (Advanced Driver Assistance System) SoCs (System on Chips).

To assist driver’s safety and convenience, ADAS technology continues to evolve with improvement of the performance of ADAS SoCs.

RelatedPosts

Samsung MLCCs Lineup for In-Vehicle Infotainment

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

The enhanced performance of SoCs leads to higher power consumption and an increase in switching frequency, which in turn requires high-capacitance and Low ESL MLCCs for stable power delivery to the SoCs.

Samsung Electro-Mechanics provides high-capacitance, Low ESL MLCCs applicable to ADAS SoCs. They are as follows: 

1 Low Frequency Decoupling 2 High Frequency Decoupling
NeedsHigh-CapacitanceLow ESL, Low Profile (Ultra-thin)
MLCCs0201 inch ~1uF
0402 inch ~ 2.2uF
0603/0805 inch ~ 22uF
1206 inch ~ 47uF
1210 inch ~ 220uF
*0402 inch ~ 10uF
*0805 inch ~ 47uF
*1206 inch ~ 100uF

*Under Development
0201 inch – 0.1uF
0402 inch – Reversed Type
*0402/0603 inch – 3-Terminal

 *Under Development
ADAS Simplified Block Diagram with Low Frequency Decoupling capacitor (1) and High Frequency Decoupling capacitor (2).

First Solution: Compact High-Capacitance MLCCs   

With the advancement of ADAS technology, the performance of SoCs is anticipated to increase by approximately 10 times, while the power consumption at Level 3 is projected to rise by more than sixfold. To ensure the stable operation of ADAS SoCs, there is an increasing demand for high-capacitance MLCCs and compact-sized MLCCs that can be integrated within limited PCB space.

Samsung Electro-Mechanics is continuously developing and supplying small, high-capacitance MLCCs for automotive electronics to meet the space-saving demands of the high-performance trend in ADAS SoCs, maintaining the same capacitance and rated voltage while reducing size. 

Size(inch/mm)Rated VoltageTCCCapacitance
0805/20126.3VdcX7T22㎌
1206/32166.3VdcX7T47㎌

Related

Source: Samsung Electro-Mechanics

Recent Posts

Quality Challenges and Risk Mitigation for Passive Components in Harsh Environments

24.9.2025
2

Silicon Capacitors Reliable Performance in Harsh Conditions

24.9.2025
3

Tantalum Capacitor Technology Advantages for Harsh Environment

24.9.2025
8

Thermoset Polymer Dielectric Capacitors for Harsh Environment Applications 

24.9.2025
3

EMI Noise Mitigation in Automotive 48V Power Supply Systems

24.9.2025
6

Bourns Introduced 15A Compact Common Mode Choke

24.9.2025
2

AI Hardware Development and Its Consequences for Passive Electronic Components

23.9.2025
7

KYOCERA AVX Capacitors in AI Systems

23.9.2025
7

Computer Vision‑Driven Verification of Passive Component Assembly on Space‑Grade PCBs

23.9.2025
10

Bourns Adds New Common Mode Automotive Chip Inductors

23.9.2025
5

Upcoming Events

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 8
11:00 - 12:00 CEST

PCB Online Shop – simply “Made in Germany” by Würth Elektronik

Oct 14
16:00 - 17:00 CEST

Smart Sensors, Smarter AI: Building Reliable Edge Systems

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors Explained

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version