Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

    Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

    Lightweight Model for MLCC Appearance Defect Detection

    DMASS Reports First Positive Signs of European Distribution Market in Q3/25

    TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

    Wk 44 Electronics Supply Chain Digest

    Bourns Releases High Current Metal Alloy-based, Multilayer Power Chip Inductors

    Smiths Interconnect Extends Space-Qualified, High-Reliability Fixed Chip Attenuators 

    Samtec Expands Offering of Slim, High-Density HD Array Connectors

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Common Mode Chokes Selection for RF Circuits in Next-Generation Communication Systems

    Capacitor Self-balancing in a Flying-Capacitor Buck Converter

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Unveils the World’s Highest Capacitance MLCC for EVs

18.5.2023
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics announced it has succeeded in realizing the industry’s highest capacitance at high voltage MLCC ceramic capacitors applicable to electric vehicles and expanding its line-up for high-end level automotive electronic components.

The released MLCCs have been developed specifically with focus to EV electrical vehicle applications with 250V and 100V ratings and 125°C temperature range.

RelatedPosts

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

Samsung Electro-Mechanics Releases 470nF 16V MLCC in 0402 Size

  • 33nF/250V in 1206/3216 case size (CL31C333JEH1PN#) in C0G class is featuring low capacitance change rate and stable performance in wide temperature range.
  • 10µF 100V in 1210/3225 size X7S dielectric class (CL32Y106KCJ6PJ) is offering industry’s highest capacitance in high-voltage MLCCs. 

Electric vehicles operate based on high-voltage battery systems such as battery management systems (BMS) and on-board chargers (OBC). MLCCs used in electric vehicles must be able to withstand the high output voltages transmitted from the battery for ultra-fast charging and power delivery.

The 250V class 33nF product developed this time boasts the highest capacitance in the industry at the same voltage level. 22nF was the highest capacitance for the existing 250V class products. This product improves battery stability by removing high-frequency noise inside the battery module while having the durability to withstand high voltages.

The 100V class 10µF product is used in LED headlamps for electric vehicles and its electric capacitance has been doubled compared to the previous product. Semiconductors used in LED headlamps require high power consumption, so high-capacitance MLCCs that can store a lot of energy and supply it to semiconductors quickly and stably while having high voltage durability are essential.

In general, it is difficult for MLCCs to satisfy both voltage and capacitance characteristics at the same time. Designing thicker dielectrics to increase voltage characteristics reduces the number of internal electrodes that can be stacked, making it difficult to increase capacitance. Samsung Electro-Mechanics has realized high capacitance by refining dielectrics as core raw material in the form of nano-level fine powder. The company also explained that its proprietary surface coating method minimizes agglomeration between powders, enabling stable operation at high voltages.

Meanwhile, the MLCCs developed this time satisfies AEC-Q200, a reliability test standard for automotive electronic components, enabling them to be used in other applications such as ADAS, body, chassis, and infotainment in vehicles.

Samsung Electro-Mechanics CEO Chang Duckhyun said that “Samsung Electro-Mechanics has established the whole line-up for automotive MLCC by developing electric vehicle products,” and that “Samsung Electro-Mechanics will develop and manufacture core raw materials for MLCCs on its own to enhance technological competitiveness, and expand its market share for electronic device MLCCs by internalizing facilities and strengthening production capacity.”

Automotive MLCCs play a role similar to MLCCs for IT, but they are used in different environments than that of IT products, and above all, they require a high level of reliability and durability as they are closely related to human lives. Automotive MLCCs must operate reliably even in extreme environments such as high temperatures (150°C or higher) and low temperatures (55°C below zero), situations where impacts are delivered including bending stiffness, and high humidity (humidity of 85%). In addition, they can be supplied only after passing stringent manufacturing standards that require AEC-Q200 certification, which is a reliability test specification for automotive electronic components (certification specifications for passive components for automobiles), and rigorous verification by each customer. At least 3,000 to a maximum of 15,000 MLCCs are used in an automobile, and they are high value-added products with higher unit prices than IT products. In addition, with the expansion of related markets such as electrification of automobiles, electric vehicles, and autonomous vehicles, automotive MLCCs are considered to be a blue ocean in the industry. The global automotive MLCC market size is expected to continue growing by nearly 40% per year from USD 2.9 billion in 2023 to USD 4 billion by 2026.

Related

Source: Samsung Electro-Mechanics

Recent Posts

Microhardness — the Hidden Key to Understanding MnOx Cathode Quality in Tantalum Capacitors

3.11.2025
6

Samsung to Invest in its Philippine MLCC Facility to Meet Automotive Demand

3.11.2025
4

Lightweight Model for MLCC Appearance Defect Detection

3.11.2025
1

DMASS Reports First Positive Signs of European Distribution Market in Q3/25

3.11.2025
3

TAIYO YUDEN Releases 22uF MLCC in 0402 Size for AI Servers

3.11.2025
2

Capacitor Self-balancing in a Flying-Capacitor Buck Converter

30.10.2025
23

Murata Expands Automotive Metal Frame Y2/X1 Safety MLCC Capacitors to 500V

30.10.2025
32

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
32

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
62

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
48

Upcoming Events

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

Nov 6
14:30 - 16:00 CET

Self-healing polymer materials for the next generation of high-temperature power capacitors

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version