Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    TDK Releases Ultra-small PFC Capacitors

    KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

    Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

    TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

    DigiKey Presents Factory Tomorrow Season 5 Video Series

    Samsung MLCCs Lineup for In-Vehicle Infotainment

    source: Samtec

    Best Practices for Cable Management in High-Speed and High-Density Systems

    Würth Elektronik Unveils Compact Common-Mode Data Lines Chokes

    Bourns Releases TCO 240 Watt USB Mini-Breaker

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Percolation Phenomenon and Reliability of Molded Power Inductors in DC/DC converters

    Root Causes and Effects of DC Bias and AC in Ceramic Capacitors

    How to Calculate the Output Capacitor for a Switching Power Supply

    Switched Capacitor Converter Explained

    Understanding Inductor Dot Markings and Their Application in LTspice

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Samsung Electro-Mechanics Unveils the World’s Highest Capacitance MLCC for EVs

18.5.2023
Reading Time: 3 mins read
A A

Samsung Electro-Mechanics announced it has succeeded in realizing the industry’s highest capacitance at high voltage MLCC ceramic capacitors applicable to electric vehicles and expanding its line-up for high-end level automotive electronic components.

The released MLCCs have been developed specifically with focus to EV electrical vehicle applications with 250V and 100V ratings and 125°C temperature range.

RelatedPosts

Samsung MLCCs Lineup for In-Vehicle Infotainment

Samsung Extends Capacitance of MLCC 0805 X7T 250V to 100nF

Samsung Releases Ultra–High-Capacitance 4.7uF 2.5V MLCC in 0201 for AI GPU

  • 33nF/250V in 1206/3216 case size (CL31C333JEH1PN#) in C0G class is featuring low capacitance change rate and stable performance in wide temperature range.
  • 10µF 100V in 1210/3225 size X7S dielectric class (CL32Y106KCJ6PJ) is offering industry’s highest capacitance in high-voltage MLCCs. 

Electric vehicles operate based on high-voltage battery systems such as battery management systems (BMS) and on-board chargers (OBC). MLCCs used in electric vehicles must be able to withstand the high output voltages transmitted from the battery for ultra-fast charging and power delivery.

The 250V class 33nF product developed this time boasts the highest capacitance in the industry at the same voltage level. 22nF was the highest capacitance for the existing 250V class products. This product improves battery stability by removing high-frequency noise inside the battery module while having the durability to withstand high voltages.

The 100V class 10µF product is used in LED headlamps for electric vehicles and its electric capacitance has been doubled compared to the previous product. Semiconductors used in LED headlamps require high power consumption, so high-capacitance MLCCs that can store a lot of energy and supply it to semiconductors quickly and stably while having high voltage durability are essential.

In general, it is difficult for MLCCs to satisfy both voltage and capacitance characteristics at the same time. Designing thicker dielectrics to increase voltage characteristics reduces the number of internal electrodes that can be stacked, making it difficult to increase capacitance. Samsung Electro-Mechanics has realized high capacitance by refining dielectrics as core raw material in the form of nano-level fine powder. The company also explained that its proprietary surface coating method minimizes agglomeration between powders, enabling stable operation at high voltages.

Meanwhile, the MLCCs developed this time satisfies AEC-Q200, a reliability test standard for automotive electronic components, enabling them to be used in other applications such as ADAS, body, chassis, and infotainment in vehicles.

Samsung Electro-Mechanics CEO Chang Duckhyun said that “Samsung Electro-Mechanics has established the whole line-up for automotive MLCC by developing electric vehicle products,” and that “Samsung Electro-Mechanics will develop and manufacture core raw materials for MLCCs on its own to enhance technological competitiveness, and expand its market share for electronic device MLCCs by internalizing facilities and strengthening production capacity.”

Automotive MLCCs play a role similar to MLCCs for IT, but they are used in different environments than that of IT products, and above all, they require a high level of reliability and durability as they are closely related to human lives. Automotive MLCCs must operate reliably even in extreme environments such as high temperatures (150°C or higher) and low temperatures (55°C below zero), situations where impacts are delivered including bending stiffness, and high humidity (humidity of 85%). In addition, they can be supplied only after passing stringent manufacturing standards that require AEC-Q200 certification, which is a reliability test specification for automotive electronic components (certification specifications for passive components for automobiles), and rigorous verification by each customer. At least 3,000 to a maximum of 15,000 MLCCs are used in an automobile, and they are high value-added products with higher unit prices than IT products. In addition, with the expansion of related markets such as electrification of automobiles, electric vehicles, and autonomous vehicles, automotive MLCCs are considered to be a blue ocean in the industry. The global automotive MLCC market size is expected to continue growing by nearly 40% per year from USD 2.9 billion in 2023 to USD 4 billion by 2026.

Related

Source: Samsung Electro-Mechanics

Recent Posts

TDK Releases Ultra-small PFC Capacitors

10.9.2025
15

KYOCERA AVX Releases Novel Mini BME Stacked Ceramic Capacitors

10.9.2025
19

Vishay Releases Class 1 Leaded High Voltage Ceramic Disc Capacitors

10.9.2025
9

TDK Releases 140C Compact Vibration Robust Automotive Aluminum Capacitors

5.9.2025
25

Samsung MLCCs Lineup for In-Vehicle Infotainment

4.9.2025
27

Littelfuse Adds 600W Automotive TVS Diodes for High-Energy Transient Protection

2.9.2025
13

Vishay Releases Harsh Environment Robust DC-Link Film Capacitor

2.9.2025
36

Bourns Releases Automotive High Creepage and Clearance Transformer

1.9.2025
31

Bourns Unveils Metal Powder Core High Current Low DCR Shielded Power Inductor

29.8.2025
35

Influence of Tantalum Capacitor Pellets Size on Stability During Oxide Film Formation

29.8.2025
40

Upcoming Events

Sep 16
17:00 - 18:00 CEST

EMI Shielding Challenges

Sep 22
September 22 @ 13:00 - September 25 @ 15:15 EDT

Pre Cap Visual Inspection per Mil-Std-883 (TM 2017)

Sep 30
September 30 @ 12:00 - October 2 @ 14:00 EDT

MIL-Std-883 TM 2010

Oct 17
12:00 - 14:00 EDT

External Visual Inspection per MIL-STD-883 TM 2009

Oct 20
October 20 - October 23

Digital WE Days 2025 – Virtual Conference

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology Explained

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • How to Design an Inductor

    0 shares
    Share 0 Tweet 0
  • Core Materials, Permeability and Their Losses

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • Premium Suppliers

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version