Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    October 2025 Interconnect, Passives and Electromechanical Components Market Insights

    Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

    Wk 43 Electronics Supply Chain Digest

    Samsung Releases Automotive Molded 2220 1kV C0G MLCC

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    VINATech Offers Smallest 100µF Al-Hybrid Capacitor

    Vishay Unveils SMD 1200V PTC Thermistors in Compact Size

    Power Inductors Future: Minimal Losses and Compact Designs

    Bourns Unveils Automotive 3 Watt Gate Driver Transformer

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    How to Select Ferrite Bead for Filtering in Buck Boost Converter

    Power Inductors Future: Minimal Losses and Compact Designs

    Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

    Connector PCB Design Challenges

    Efficient Power Converters: Duty Cycle vs Conduction Losses

    Ripple Steering in Coupled Inductors: SEPIC Case

    SEPIC Converter with Coupled and Uncoupled Inductors

    Coupled Inductors in SEPIC versus Flyback Converters

    Non-Linear MLCC Class II Capacitor Measurements Challenges

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

Switched Capacitor Converter Explained

28.7.2025
Reading Time: 3 mins read
A A

In this video, prof. Sam Ben-Yaakov explains principle of switched capacitor converter operation and its features.

Introduction

RelatedPosts

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

Efficient Power Converters: Duty Cycle vs Conduction Losses

Switched Capacitor Converters (SCCs) are pivotal in modern power electronics due to their high efficiency and design flexibility. Prof. Sam Ben-Yaakov provides an in-depth exploration of SCC operations, focusing on resonant switching, loss mechanisms, and advanced converter configurations such as Google’s innovative topology.

Basic Principles of Switched Capacitor Converters

SCCs operate by transferring charge between capacitors through controlled switching. The fundamental operation exhibits similarities to basic switched capacitor converters, albeit with sinusoidal waveforms during charging and discharging phases. This sinusoidal behavior influences the analysis of power loss and efficiency.

Power Loss Analysis

Power loss in SCCs is predominantly a function of:

  • Total Resistance (R<sub>total</sub>): Comprising R<sub>DS(on)</sub>, ESR, and ESL contributions from capacitors and inductors.
  • Current Characteristics: RMS current squared (I<sub>RMS</sub>²) and average output current.

The average current relates to the peak current in a half-sinusoidal waveform as 1/π, and RMS current is I<sub>peak</sub>/√2. Consequently, the losses are proportional to the equivalent resistance and the square of the average output current.

Resonant Switched Capacitor Converters

Resonant SCCs mitigate conduction losses through zero current switching (ZCS). However, ZCS doesn’t entirely eliminate switching losses due to the charging and discharging of output capacitors during transitions, resulting in current spikes at switch transitions.

Moving Towards Zero Voltage Switching

Advanced designs, such as Google’s switch tank converter, shift towards zero voltage switching (ZVS) to further reduce switching losses. ZVS minimizes voltage stress on MOSFETs, reducing R<sub>DS(on)</sub> and improving overall efficiency.

Google’s 4:1 Step-Down Converter

Google’s converter topology exemplifies innovation in SCC design:

  • Operation: Involves sequential control of switches (S1 and S2) to achieve a 4:1 step-down ratio.
  • Voltage Stress Reduction: Transistor voltages are limited to 2V<sub>out</sub>, significantly reducing R<sub>DS(on)</sub>.

Experimental Results and Efficiency

Experimental units demonstrated impressive efficiency:

  • High Efficiency: Up to 99% at optimal load conditions.
  • Loss Distribution: Predominantly due to MOSFET conduction, with minimal switching and inductor losses.

Future Developments

Ongoing modifications target ZVS implementation, leveraging GaN transistors to further reduce losses. This approach is promising for widespread adoption in practical circuits.

Conclusion

Switched Capacitor Converters continue to evolve, with resonant designs and advanced topologies like Google’s converter pushing efficiency boundaries. Prof. Ben-Yaakov’s insights video highlight the potential for SCCs in future power electronics applications.

Related

Source: Sam Ben-Yaakove

Recent Posts

Exxelia 4-Terminal Safety Capacitors Compliant with NF F 62-102 Railway Standard

27.10.2025
17

Samsung Releases Automotive Molded 2220 1kV C0G MLCC

23.10.2025
38

How to Select Ferrite Bead for Filtering in Buck Boost Converter

23.10.2025
33

VINATech Offers Smallest 100µF Al-Hybrid Capacitor

23.10.2025
33

Power Inductors Future: Minimal Losses and Compact Designs

22.10.2025
40

Percolation Phenomenon: Degradation of Molded Power Inductors in DC/DC Converters

21.10.2025
43

Murata Integrates Component Models into Cadence EDA Tools

21.10.2025
41

High Energy Density Polymer Film Capacitors via Molecular and Interfacial Design

15.10.2025
27

KYOCERA AVX Expands Stacked MLCC Capacitors Offering

14.10.2025
47

Over-Voltage Protection Clippers, Clampers, Snubbers, DC Restorers

13.10.2025
39

Upcoming Events

Oct 30
11:00 - 12:00 CET

Space Ceramic Capacitors with Flexible Testing

Nov 4
10:00 - 11:00 PST

Design and Stability Analysis of GaN Power Amplifiers using Advanced Simulation Tools

Nov 4
November 4 @ 12:00 - November 6 @ 14:15 EST

Wirebond Materials, Processes, Reliability and Testing

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • SEPIC Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • Flying Capacitors

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version