Passive Components Blog
No Result
View All Result
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
  • Home
  • NewsFilter
    • All
    • Aerospace & Defence
    • Antenna
    • Applications
    • Automotive
    • Capacitors
    • Circuit Protection Devices
    • electro-mechanical news
    • Filters
    • Fuses
    • Inductors
    • Industrial
    • Integrated Passives
    • inter-connect news
    • Market & Supply Chain
    • Market Insights
    • Medical
    • Modelling and Simulation
    • New Materials & Supply
    • New Technologies
    • Non-linear Passives
    • Oscillators
    • Passive Sensors News
    • Resistors
    • RF & Microwave
    • Telecommunication
    • Weekly Digest

    Vishay Extends Aluminum Capacitors Rating Up to 600 V for DC Links

    Würth Elektronik Introduces Product Navigator for Passive Components

    Panasonic Passive Components for Reliable Robotic Arms

    Littelfuse Unveils Ultra-Low-Power TMR Magnetic Switches

    DC/DC Push‑Pull Converter vs PSFB Design Guide

    Wk 2 Electronics Supply Chain Digest

    Rubycon PMLCAP DC‑Link Film Capacitors in Mass Production

    Bourns SSD‑1000A AEC‑Q Digital Current Sensors

    YAGEO High‑Capacitance X7R Automotive MLCC Extensions

    Trending Tags

    • Ripple Current
    • RF
    • Leakage Current
    • Tantalum vs Ceramic
    • Snubber
    • Low ESR
    • Feedthrough
    • Derating
    • Dielectric Constant
    • New Products
    • Market Reports
  • VideoFilter
    • All
    • Antenna videos
    • Capacitor videos
    • Circuit Protection Video
    • Filter videos
    • Fuse videos
    • Inductor videos
    • Inter-Connect Video
    • Non-linear passives videos
    • Oscillator videos
    • Passive sensors videos
    • Resistor videos

    One‑Pulse Characterization of Nonlinear Power Inductors

    Thermistor Linearization Challenges

    Coaxial Connectors and How to Connect with PCB

    PCB Manufacturing, Test Methods, Quality and Reliability

    Transformer Behavior – Current Transfer and Hidden Feedback

    Choosing the Right Capacitor: The Importance of Accurate Measurements

    RF Inductors: Selection and Design Challenges for High-Frequency Circuits

    Transformer Safety IEC 61558 Standard

    3-Phase EMI Filter Design, Simulation, Calculation and Test

    Trending Tags

    • Capacitors explained
    • Inductors explained
    • Resistors explained
    • Filters explained
    • Application Video Guidelines
    • EMC
    • New Products
    • Ripple Current
    • Simulation
    • Tantalum vs Ceramic
  • Knowledge Blog
  • Suppliers
    • Who is Who
  • PCNS
    • PCNS 2025
    • PCNS 2023
    • PCNS 2021
    • PCNS 2019
    • PCNS 2017
  • Events
No Result
View All Result
Passive Components Blog
No Result
View All Result

TDK Builds New Factory in Japan to Strengthen the Passive Components Business

20.3.2022
Reading Time: 3 mins read
A A

TDK has decided to build new factory in Japan with the target to strengthen the development and volume production of groundbreaking electronic components by harnessing its core competences of magnetic material technology and plating technology. The new site will enable TDK to accelerate its customer service and launch new products quicker to the market.

TDK Corporation announces that it has decided to build “the Inakura Factory West Site” in Nikaho City, Akita Prefecture, Japan. The new factory will be a new production facility for electronic components. Construction of the first phase will begin in April 2022. 

RelatedPosts

TDK Unveils Small Automotive Power Inductors

TDK Releases 35A 750J Current Limiters for High-Power Applications

TDK and NIPPON CHEMICAL to Establish Joint Venture for MLCC Material Development

Thanks to two historic changes, Digital transformation (DX), utilizing IoT, AI and other technologies; and Energy transformation (EX), including through the expanded use of renewable energy, the importance of electronic components and devices is reaching unprecedented heights. TDK will accelerate its efforts in DX and EX, by keeping its sights not only on its customers but on the end consumer as it strives to offer technology that can contribute to a better future of everyone. With evolving electronics equipment and applications, demand for electronics components is increasing globally, and there is a growing need for electronic components manufacturers to respond to this trend in a timely manner. 

In addition, the factory plans to operate its electricity needs with 100% renewable energy. TDK’s electronic components business has been aggressive in introducing renewable energy, such as the use of geothermal power generation in Iceland. The new factory will also be an eco-friendly facility that incorporates an energy management system that brings together TDK’s power generation and storage technologies. It will also help reduce CO2 emissions. 

TDK will also respond to the labor shortage that have confronted the domestic manufacturing industry in Japan in recent years and build a futuristic factory that also achieves labor saving in production processes. 

The construction of this factory is TDKs first step to continue to bolster its production capabilities for electronic components in line with the corporate growth strategy in the Akita/Shonai area, centered on the existing TDK Electronics Factories (Yurihonjo City, Akita Prefecture). Moreover, sustainable initiatives are underway in the prefecture, such as a town development project as part of regional revitalization and an offshore wind power generation project. TDK will actively participate in these initiatives to revitalize the entire Akita/Shonai area.

Overview of the new factory

TDK Inakura Factory West Site Phase 1 Construction (tentative name) 

1. Construction site: 4-3 Tateishi, Kisakatamachi, Nikaho City, Akita Prefecture
2. Total floor area: Approx. 13,000 m2 (total site area: approx. 36,000 m2)
3. Building structure: 2 stories
4. Main businesses: Development and manufacture of newly developed plating process application products (non-contact power supply coil module, NFC coil, etc.)
5. Construction start date: April 2022 (plan)
6. Completion date: April 2023 (plan)
7. Mass production start date: September 2023 (plan)

Related

Source: TDK

Recent Posts

Würth Elektronik Introduces Product Navigator for Passive Components

14.1.2026
40

Panasonic Passive Components for Reliable Robotic Arms

14.1.2026
46

DC/DC Push‑Pull Converter vs PSFB Design Guide

12.1.2026
60

How Metal Prices Are Driving Passive Component Price Hikes

8.1.2026
297

Modelithics COMPLETE Library v25.8 for Keysight ADS

7.1.2026
39

Taiyo Yuden Releases 165C Automotive Multilayer Metal Power Inductor in 1608 Size

7.1.2026
39

2025 Top Passive Components Blog Articles

5.1.2026
112

Exxelia Releases Custom Smart Integrated Magnetics for Space Applications

5.1.2026
59

One‑Pulse Characterization of Nonlinear Power Inductors

22.12.2025
86

Upcoming Events

Jan 21
18:00 - 18:45 CET

To Rogowski or not to Rogowski

Jan 27
16:00 - 17:00 CET

Simplifying Vehicle Development with Automotive Ethernet and Zonal Smart Switch Technologies

Feb 24
16:00 - 17:00 CET

Designing Qi2 Wireless Power Systems: Practical Development and EMC Optimization

View Calendar

Popular Posts

  • Buck Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Boost Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • LLC Resonant Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Flyback Converter Design and Calculation

    0 shares
    Share 0 Tweet 0
  • Ripple Current and its Effects on the Performance of Capacitors

    3 shares
    Share 3 Tweet 0
  • MLCC and Ceramic Capacitors

    0 shares
    Share 0 Tweet 0
  • How Metal Prices Are Driving Passive Component Price Hikes

    0 shares
    Share 0 Tweet 0
  • Dual Active Bridge (DAB) Topology

    0 shares
    Share 0 Tweet 0
  • What is a Dielectric Constant and DF of Plastic Materials?

    4 shares
    Share 4 Tweet 0
  • Degradation of Capacitors and its Failure Mechanisms

    0 shares
    Share 0 Tweet 0

Newsletter Subscription

 

Passive Components Blog

© EPCI - Leading Passive Components Educational and Information Site

  • Home
  • Privacy Policy
  • EPCI Membership & Advertisement
  • About

No Result
View All Result
  • Home
  • Knowledge Blog
  • PCNS

© EPCI - Leading Passive Components Educational and Information Site

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.
Go to mobile version